Multiple Soliton Solutions of Alice–Bob Boussinesq Equations
-
Abstract
Three Alice–Bob Boussinesq (ABB) nonlocal systems with shifted parity (ˆPs), delayed time reversal (ˆTd) and ˆPsˆTd nonlocalities are investigated. The multi-soliton solutions of these models are systematically found from the ˆPs, ˆTd and ˆPsˆTd symmetry reductions of a coupled local Boussinesq system. The result shows that for ABB equations with ˆPs and/or ˆTd nonlocality, an odd number of solitons is prohibited. The solitons of the ˆPs nonlocal ABB and ˆTd nonlocal ABB equations must be paired, while any number of solitons is allowed for the ˆPsˆTd nonlocal ABB system. t-breathers, x-breathers and rogue waves exist for all three types of nonlocal ABB system. In particular, different from classical local cases, the first-order rogue wave can have not only four leaves but also five and six leaves. -
-
References
[1] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243 doi: 10.1103/PhysRevLett.80.5243[2] Konotop V V, Yang J K and Zezyulin D A 2016 Rev. Mod. Phys. 88 035002 doi: 10.1103/RevModPhys.88.035002[3] Ablowitz M J and Musslimani Z H 2013 Phys. Rev. Lett. 110 064105 doi: 10.1103/PhysRevLett.110.064105[4] Lou S Y 2018 J. Math. Phys. 59 083507 doi: 10.1063/1.5051989[5] Lou S Y and Huang F 2017 Sci. Rep. 7 869 doi: 10.1038/s41598-017-00844-y[6] Lou S Y 2017 Chin. Phys. Lett. 34 060201 doi: 10.1088/0256-307X/34/6/060201[7] Jia M and Lou S Y 2018 Phys. Lett. A 382 1157 doi: 10.1016/j.physleta.2018.02.036[8] Lou S Y 2019 Stud. Appl. Math. 142 accepted doi: 10.1111/sapm.12265[9] Lou S Y 2019 arXiv:1901.02828[10] Song Q C, Xiao D M and Zhu Z N 2017 Commun. Nonlinear Sci. & Numer. Simul. 47 1 doi: 10.1016/j.cnsns.2016.11.005[11] Modak S, Singh A and Panigrahi P 2016 Eur. Phys. J. B 89 149 doi: 10.1140/epjb/e2016-70130-7[12] Ablowitz M J and Musslimani Z H 2016 Nonlinearity 29 915 doi: 10.1088/0951-7715/29/3/915[13] Ji J L and Zhu Z N 2017 J. Math. Anal. Appl. 453 973 doi: 10.1016/j.jmaa.2017.04.042[14] Ablowitz M J and Musslimani Z H 2014 Phys. Rev. E 90 032912 doi: 10.1103/PhysRevE.90.032912[15] Dimakos M and Fokas A S 2013 J. Math. Phys. 54 081504 doi: 10.1063/1.4817345[16] Fokas A S 2016 Nonlinearity 29 319 doi: 10.1088/0951-7715/29/2/319[17] Rao J G, Cheng Y and He J S 2017 Stud. Appl. Math. 139 568 doi: 10.1111/sapm.12178[18] Rao J G, Zhang Y S, Fokas A S and He J S 2018 Nonlinearity 31 4090 doi: 10.1088/1361-6544/aac761[19] Yang B and Chen Y 2018 Nonl. Dyn. 94 489 doi: 10.1007/s11071-018-4373-0[20] Peng L, Yang X D and Lou S Y 2012 Commun. Theor. Phys. 58 1 doi: 10.1088/0253-6102/58/1/01[21] Hirota R 1971 Phys. Rev. Lett. 27 1192 doi: 10.1103/PhysRevLett.27.1192 -
Related Articles