Processing math: 100%

Multiple Soliton Solutions of Alice–Bob Boussinesq Equations

Funds: Supported by the National Natural Science Foundation of China under Grant No 11435005, and the K. C. Wong Magna Fund in Ningbo University.
  • Received Date: February 10, 2019
  • Published Date: April 30, 2019
  • Three Alice–Bob Boussinesq (ABB) nonlocal systems with shifted parity (ˆPs), delayed time reversal (ˆTd) and ˆPsˆTd nonlocalities are investigated. The multi-soliton solutions of these models are systematically found from the ˆPs, ˆTd and ˆPsˆTd symmetry reductions of a coupled local Boussinesq system. The result shows that for ABB equations with ˆPs and/or ˆTd nonlocality, an odd number of solitons is prohibited. The solitons of the ˆPs nonlocal ABB and ˆTd nonlocal ABB equations must be paired, while any number of solitons is allowed for the ˆPsˆTd nonlocal ABB system. t-breathers, x-breathers and rogue waves exist for all three types of nonlocal ABB system. In particular, different from classical local cases, the first-order rogue wave can have not only four leaves but also five and six leaves.
  • Article Text

  • [1]
    Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243 doi: 10.1103/PhysRevLett.80.5243

    CrossRef Google Scholar

    [2]
    Konotop V V, Yang J K and Zezyulin D A 2016 Rev. Mod. Phys. 88 035002 doi: 10.1103/RevModPhys.88.035002

    CrossRef Google Scholar

    [3]
    Ablowitz M J and Musslimani Z H 2013 Phys. Rev. Lett. 110 064105 doi: 10.1103/PhysRevLett.110.064105

    CrossRef Google Scholar

    [4]
    Lou S Y 2018 J. Math. Phys. 59 083507 doi: 10.1063/1.5051989

    CrossRef Google Scholar

    [5]
    Lou S Y and Huang F 2017 Sci. Rep. 7 869 doi: 10.1038/s41598-017-00844-y

    CrossRef Google Scholar

    [6]
    Lou S Y 2017 Chin. Phys. Lett. 34 060201 doi: 10.1088/0256-307X/34/6/060201

    CrossRef Google Scholar

    [7]
    Jia M and Lou S Y 2018 Phys. Lett. A 382 1157 doi: 10.1016/j.physleta.2018.02.036

    CrossRef Google Scholar

    [8]
    Lou S Y 2019 Stud. Appl. Math. 142 accepted doi: 10.1111/sapm.12265

    CrossRef Google Scholar

    [9]
    Lou S Y 2019 arXiv:1901.02828

    Google Scholar

    [10]
    Song Q C, Xiao D M and Zhu Z N 2017 Commun. Nonlinear Sci. & Numer. Simul. 47 1 doi: 10.1016/j.cnsns.2016.11.005

    CrossRef Google Scholar

    [11]
    Modak S, Singh A and Panigrahi P 2016 Eur. Phys. J. B 89 149 doi: 10.1140/epjb/e2016-70130-7

    CrossRef Google Scholar

    [12]
    Ablowitz M J and Musslimani Z H 2016 Nonlinearity 29 915 doi: 10.1088/0951-7715/29/3/915

    CrossRef Google Scholar

    [13]
    Ji J L and Zhu Z N 2017 J. Math. Anal. Appl. 453 973 doi: 10.1016/j.jmaa.2017.04.042

    CrossRef Google Scholar

    [14]
    Ablowitz M J and Musslimani Z H 2014 Phys. Rev. E 90 032912 doi: 10.1103/PhysRevE.90.032912

    CrossRef Google Scholar

    [15]
    Dimakos M and Fokas A S 2013 J. Math. Phys. 54 081504 doi: 10.1063/1.4817345

    CrossRef Google Scholar

    [16]
    Fokas A S 2016 Nonlinearity 29 319 doi: 10.1088/0951-7715/29/2/319

    CrossRef Google Scholar

    [17]
    Rao J G, Cheng Y and He J S 2017 Stud. Appl. Math. 139 568 doi: 10.1111/sapm.12178

    CrossRef Google Scholar

    [18]
    Rao J G, Zhang Y S, Fokas A S and He J S 2018 Nonlinearity 31 4090 doi: 10.1088/1361-6544/aac761

    CrossRef Google Scholar

    [19]
    Yang B and Chen Y 2018 Nonl. Dyn. 94 489 doi: 10.1007/s11071-018-4373-0

    CrossRef Google Scholar

    [20]
    Peng L, Yang X D and Lou S Y 2012 Commun. Theor. Phys. 58 1 doi: 10.1088/0253-6102/58/1/01

    CrossRef Google Scholar

    [21]
    Hirota R 1971 Phys. Rev. Lett. 27 1192 doi: 10.1103/PhysRevLett.27.1192

    CrossRef Google Scholar

  • Related Articles

    [1]WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation [J]. Chin. Phys. Lett., 2012, 29(2): 020203. doi: 10.1088/0256-307X/29/2/020203
    [2]CHEN Shou-Ting, ZHU Xiao-Ming, LI Qi, CHEN Deng-Yuan. N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation [J]. Chin. Phys. Lett., 2011, 28(6): 060202. doi: 10.1088/0256-307X/28/6/060202
    [3]LIU Yu. New Type Soliton Solutions to Korteweg-de Vries and Benjamin-Bona-Mahony Equations [J]. Chin. Phys. Lett., 2010, 27(9): 090201. doi: 10.1088/0256-307X/27/9/090201
    [4]YOU Fu-Cai, ZHANG Jiao, HAO Hong-Hai. Multi-Soliton Solutions of the Levi Equations [J]. Chin. Phys. Lett., 2009, 26(9): 090201. doi: 10.1088/0256-307X/26/9/090201
    [5]MO Jia-Qi. A Variational Iteration Solving Method for a Class of Generalized Boussinesq Equations [J]. Chin. Phys. Lett., 2009, 26(6): 060202. doi: 10.1088/0256-307X/26/6/060202
    [6]WU Yong-Qi. Periodic Wave Solution to the (3+1)-Dimensional Boussinesq Equation [J]. Chin. Phys. Lett., 2008, 25(8): 2739-2742.
    [7]LIN Ji, LOU Sen-Yue, WANG Ke-Lin. Multi-soliton Solutions of the Konopelchenko-Dubrovsky Equation [J]. Chin. Phys. Lett., 2001, 18(9): 1173-1175.
    [8]ZHANG Jie-fang. Multiple Soliton Solutions of the Dispersive Long-Wave Equations [J]. Chin. Phys. Lett., 1999, 16(1): 4-5.
    [9]WU Ying, YANG Xiaoxue. Soliton Chain Solutions to the Two-Dimensional Higher Order Korteweg de Vries Equations of Lax Hierarchy [J]. Chin. Phys. Lett., 1992, 9(2): 61-64.
    [10]YAN Zhida. MULTI-SOLITON SOLUTIONS OF COUPLED NONLINEAR SCHRODINGER EQUATIONS [J]. Chin. Phys. Lett., 1987, 4(4): 185-188.

Catalog

    Article views (310) PDF downloads (584) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return