[1] | Huang J, Xu K, Lei S L, Su H B, Yang S F, Li Q X and Yang J L 2012 J. Chem. Phys. 136 064707 | Iron-phthalocyanine molecular junction with high spin filter efficiency and negative differential resistance
[2] | He Y D, Dong H L, Li T, Wang C L, Shao W, Zhang Y J, Jiang L and Hu W P 2010 Appl. Phys. Lett. 97 133301 | Graphene and graphene oxide nanogap electrodes fabricated by atomic force microscopy nanolithography
[3] | Areshkin D A, Gunlycke D and White C T 2007 Nano Lett. 7 204 | Ballistic Transport in Graphene Nanostrips in the Presence of Disorder: Importance of Edge Effects
[4] | Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109 | The electronic properties of graphene
[5] | Guo X S, Lu B A and Xie E Q 2011 Chin. Phys. Lett. 28 076803 | Growth of Graphene Nanoribbons and Carbon Onions from Polymer
[6] | Geim A K and Novoselov K S 2007 Nat. Mater. 6 183 | The rise of graphene
[7] | Deretzis I, Fiori G, Iannaccone G and La A 2010 Phys. Rev. B 81 085427 | Effects due to backscattering and pseudogap features in graphene nanoribbons with single vacancies
[8] | He J J, Guo Y D and Yan X H 2017 Sci. Rep. 7 43922 | Negative differential resistance and bias-modulated metal-to-insulator transition in zigzag C2N-h2D nanoribbon
[9] | Zhang R Q, Li B and Yang J 2015 Nanoscale 7 14062 | Effects of stacking order, layer number and external electric field on electronic structures of few-layer C 2 N-h2D
[10] | Schwierz F 2010 Nat. Nanotechnol. 5 487 | Graphene transistors
[11] | Liao L, Lin Y C, Bao M Q, Cheng R, Bai J W, Liu Y, Qu Y Q, Wang K L, Huang Y and Duan X F 2010 Nature 467 305 | High-speed graphene transistors with a self-aligned nanowire gate
[12] | Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197 | Two-dimensional gas of massless Dirac fermions in graphene
[13] | Li J, Yang S Y and Li S S 2015 Chin. Phys. Lett. 32 077102 | N-Doped Zigzag Graphene Nanoribbons on Si(001): a First-Principles Calculation
[14] | Liu Y, Xia C J, Zhang B Q, Zhang T T, Cui Y and Hu Z Y 2018 Chin. Phys. Lett. 35 067101 | Effect of Chemical Doping on the Electronic Transport Properties of Tailoring Graphene Nanoribbons
[15] | Mahmood J, Lee E K, Jung M, Shin D, Jeon I Y, Jung S M, Choi H J, Seo J M, Bae S Y, Sohn S D, Park N, Oh J H, Shin H J and Baek J B 2015 Nat. Commun. 6 6486 | Nitrogenated holey two-dimensional structures
[16] | Sahin H 2015 Phys. Rev. B 92 085421 | Structural and phononic characteristics of nitrogenated holey graphene
[17] | He J J, Guo Y D, Yan X H and Zeng H L 2018 Physica B 528 1 | Electronic, magnetic and transport properties of transition metal-doped holely C 2 N- h 2D nanoribbons
[18] | Song Y, Xie Z, Zhang G P, Ma Y and Wang C K 2013 Phys. Chem. C 117 20951 | Bias Dependence of Rectifying Direction in a Diblock Co-oligomer Molecule with Graphene Nanoribbon Electrodes
[19] | Zhang G P, Hu G C, Li Z L and Wang C K 2011 Chin. Phys. B 20 127304 | The effects of contact configurations on the rectification of dipyrimidinyl—diphenyl diblock molecular junctions
[20] | Li J C and Gong X 2013 Org. Electron. 14 2451 | Diode rectification and negative differential resistance of dipyrimidinyl–diphenyl molecular junctions
[21] | Ye M, Xia C J, Yang A Y, Zhang B Q, Su Y H, Tu Z Y and Ma Y 2017 Chin. Phys. Lett. 34 117101 | Electronic Transport Properties of Diblock Co-Oligomer Molecule Devices Sandwiched between Nitrogen Doping Armchair Graphene Nanoribbon Electrodes *
[22] | Song Y, Bao D L, Xie Z, Zhang G P and Wang C K 2013 Phys. Lett. A 377 3228 | Obvious variation of rectification behaviors induced by isomeric anchoring groups for dipyrimidinyl–diphenyl molecular junctions
[23] | Brandbyge M, Mozos J L, Ordejon P, Taylor J and Stokbro K 2002 Phys. Rev. B 65 165401 | Density-functional method for nonequilibrium electron transport
[24] | Monkhorst H and Pack J 1976 Phys. Rev. B 13 5188 | Special points for Brillouin-zone integrations