Source Ranging Using Ensemble Convolutional Networks in the Direct Zone of Deep Water

Funds: Supported by the National Natural Science Foundation of China under Grant Nos 11434012 and 11874061.
  • Received Date: January 13, 2019
  • Published Date: March 31, 2019
  • Using deep convolutional neural networks as primary learners and a deep neural network as meta-learner, source ranging is solved as a regression problem with the ensemble learning method. Simulated acoustic data from the acoustic propagation model are used as the training data. Real data from an experiment in the South China Sea are used as the test data to demonstrate the performance. The results indicate that in the direct zone of deep water, signals received by a very deep receiver can be used to estimate the range of underwater sound source. Within 30 km, the mean absolute error of the range predictions is 1.0 km and the mean absolute percentage error is 7.9%.
  • Article Text

  • [1]
    Duan R, Yang K D, Ma Y L and Lei B 2012 Chin. Phys. B 21 124301 doi: 10.1088/1674-1056/21/12/124301

    CrossRef Google Scholar

    [2]
    McCargar R and Zurk L M 2013 J. Acoust. Soc. Am. 133 EL320 doi: 10.1121/1.4795241

    CrossRef Google Scholar

    [3]
    Michalopoulu Z H and Porter M B 1996 IEEE J. Oceanic Eng. 21 384 doi: 10.1109/48.544049

    CrossRef Google Scholar

    [4]
    Dosso S E and Wilmut M J 2012 J. Acoust. Soc. Am. 132 2273 doi: 10.1121/1.4730978

    CrossRef Google Scholar

    [5]
    Krizenvsky A, Sutskever I and Hinton G E 2012 Int. Conf. Neural Inf. Process. Syst. Nevada Am. 2–5 Dec 2012 60 1097

    Google Scholar

    [6]
    Szegedy C, Liu W et al. 2015 Comput. Vision Pattern Recognit. Boston, USA 8–10 June 2015 1

    Google Scholar

    [7]
    He K M, Zhang X Y et al. 2016 Comput. Vision Pattern Recognit. Las Vegas, USA 27–30 June 2016 770

    Google Scholar

    [8]
    Steinberg B Z, Beran M J, Chin S H et al. 1991 J. Acoust. Soc. Am. 90 2081 doi: 10.1121/1.401635

    CrossRef Google Scholar

    [9]
    Ozard J M, Zakarauskas P and Ko P 1991 J. Acoust. Soc. Am. 90 2658 doi: 10.1121/1.401860

    CrossRef Google Scholar

    [10]
    Niu H Q, Reeves E and Gerstoft P 2017 J. Acoust. Soc. Am. 142 1176 doi: 10.1121/1.5000165

    CrossRef Google Scholar

    [11]
    Niu H Q, Ozanich E and Gerstoft P 2017 J. Acoust. Soc. Am. 142 EL455 doi: 10.1121/1.5010064

    CrossRef Google Scholar

    [12]
    Huang Z Q, Xu J, Gong Z X et al. 2018 J. Acoust. Soc. Am. 143 2922 doi: 10.1121/1.5036725

    CrossRef Google Scholar

    [13]
    Zhou Z H 2016 Machine Learning Beijing: Tsinghua University Press chap 8 p 171

    Google Scholar

    [14]
    Breiman L 1996 IEEE Int. Workshop Mach. Learn. Signal Process. 24 49 doi: 10.1007/BF00117832

    CrossRef Google Scholar

    [15]
    Jensen F B, Kuperman W A, Porter M B and Schmidt H 2011 Comput. Ocean Acoustic New York: Springer 2nd edn chap 5 p 337

    Google Scholar

    [16]
    Wu S L, Li Z L and Qin J X 2015 Chin. Phys. Lett. 32 124301 doi: 10.1088/0256-307X/32/12/124301

    CrossRef Google Scholar

    [17]
    Harrison C H 2011 J. Acoust. Soc. Am. 129 2863 doi: 10.1121/1.3569701

    CrossRef Google Scholar

Catalog

    Article views (85) PDF downloads (624) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return