An Improvement on the Combination of Magnetic Trap and Fluorescent Resonant Energy Transfer

Funds: Supported by the National Natural Science Foundation of China under Grant No 11574382.
  • Received Date: October 14, 2018
  • Published Date: February 28, 2019
  • The combination of magnetic trap (MT) and fluorescence resonant energy transfer (FRET) allows for nanoscale measurements of configurational changes of biomolecules under force. However, the magnetic bead involved in MT experiments introduces a substantial amount of background fluorescence which reduces the signal-to-noise ratio (SNR) of FRET significantly. Moreover, the short lifetime of the dye used in FRET limits the total sampling time when combined with MT. Here we use a moveable tube lens to adjust the wave front in the light pathway of MT so that both images of the magnetic bead and the fluorescent signals can be detected when long DNA handles are used to reduce the auto-fluorescence of the magnetic bead. We utilize the internal trigger of an electron multiplying charge-coupled device camera to control a shutter so that the dye can be excited intermittently when long time measurement of FRET is needed. As a demonstration of the hybrid technique, we observe the unfolding/refolding dynamics of a DNA hairpin and measure the DNA unwinding activity of the saccharomyces cerevisiae Pif1 (Pif1). Our results show that the unwinding burst of Pif1 under external force is different from that without the force. In addition, the improvement provides a better SNR and a longer sampling time in experiments in the MT-FRET assay.
  • Article Text

  • [1]
    Cecconi C, Shank E A, Bustamante C and Marqusee S 2005 Science 309 2057 doi: 10.1126/science.1116702

    CrossRef Google Scholar

    [2]
    Marshall B T, Long M, Piper J W, Yago T, McEver R P and Zhu C 2003 Nature 423 190 doi: 10.1038/nature01605

    CrossRef Google Scholar

    [3]
    Li C and Li J 2015 Chin. Phys. Lett. 32 108702 doi: 10.1088/0256-307X/32/10/108702

    CrossRef Google Scholar

    [4]
    Cordova J C, Das D K, Manning H W and Lang M J 2014 Curr. Opin. Struct. Biol. 28 142 doi: 10.1016/j.sbi.2014.08.010

    CrossRef Google Scholar

    [5]
    Lipfert J, Hao X M and Dekker N H 2009 Biophys. J. 96 5040 doi: 10.1016/j.bpj.2009.03.055

    CrossRef Google Scholar

    [6]
    Graves E T, Duboc C, Fan J, Stransky F, Leroux C M and Strick T R 2015 Nat. Struct. Mol. Biol. 22 452 doi: 10.1038/nsmb.3019

    CrossRef Google Scholar

    [7]
    Wang S, Zheng H Z, Zhao Z Y, Lu Y and Xu C H 2013 Acta Phys. Sin. 62 168703 in Chinese doi: 10.7498/aps.62.168703

    CrossRef Google Scholar

    [8]
    Zhao Z Y, Xu C H, Li J H, Huang X Y, Ma J B and Lu Y 2017 Acta Phys. Sin. 66 188701 in Chinese doi: 10.7498/aps.66.188701

    CrossRef Google Scholar

    [9]
    Capitanio M and Pavone F S 2013 Biophys. J. 105 1293 doi: 10.1016/j.bpj.2013.08.007

    CrossRef Google Scholar

    [10]
    Roy R, Hohng S and Ha T 2008 Nat. Methods 5 507 doi: 10.1038/nmeth.1208

    CrossRef Google Scholar

    [11]
    Gosse C and Croquette V 2002 Biophys. J. 82 3314 doi: 10.1016/S0006-34950275672-5

    CrossRef Google Scholar

    [12]
    Tran P L T, Pohl T J, Chen C F, Chan A, Pott S and Zakian V A 2017 Nat. Commun. 8 15025 doi: 10.1038/ncomms15025

    CrossRef Google Scholar

    [13]
    Paeschke K, Bochman M L, Garcia P T, Cejka P, Friedman K L, Kowalczykowski S C and Zakian V A 2013 Nature 497 458 doi: 10.1038/nature12149

    CrossRef Google Scholar

    [14]
    Boulé J B and Zakian V A 2007 Nucl. Acids Res. 35 5809 doi: 10.1093/nar/gkm613

    CrossRef Google Scholar

    [15]
    Li J H, Lin W X, Zhang B, Nong D G, Ju H P, Ma J B, Xu C H, Ye F F, Xi X G, Li M, Lu Y, Dou S X 2016 Nucl. Acids Res. 44 4330 doi: 10.1093/nar/gkw295

    CrossRef Google Scholar

Catalog

    Article views (220) PDF downloads (335) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return