$\frac{1}{3}{\it \Delta} _{\rm p}$ | $\frac{2}{3}{\it \Delta} _{\rm p}$ | ${\it \Delta} _{\rm p}$ | |||||||
---|---|---|---|---|---|---|---|---|---|
volume | surface | mixed | volume | surface | mixed | volume | surface | mixed | |
$t_{0}^{\prime }$ (MeV$\cdot$fm$^{-3}$) | $-$247.5 | $-$717.4 | $-$393.8 | $-$267.0 | $-$752.2 | $-$427.2 | $-$290.5 | $-$788.4 | $-$458.2 |
DF | 59.32% | 50.73% | 59.03% | 46.79% | 30.00% | 46.86% | 36.49% | 17.73% | 34.35% |
$v_{\rm p}^{2}$ | 0.052 | 0.114 | 0.056 | 0.158 | 0.313 | 0.161 | 0.250 | 0.437 | 0.269 |
$\Delta E$ (MeV) | 3.441 | 2.554 | 3.452 | 3.289 | 1.868 | 3.323 | 3.203 | 1.270 | 2.998 |
[1] | Bonche P et al 2005 Comput. Phys. Commun. 171 49 | Solution of the Skyrme HF+BCS equation on a 3D mesh
[2] | Dobaczewski J et al 2009 Comput. Phys. Commun. 180 2361 | Solution of the Skyrme–Hartree–Fock–Bogolyubov equations in the Cartesian deformed harmonic-oscillator basis.
[3] | Stoitsov M V et al 2013 Comput. Phys. Commun. 184 1592 | Axially deformed solution of the Skyrme-Hartree–Fock–Bogoliubov equations using the transformed harmonic oscillator basis (II) hfbtho v2.00d: A new version of the program
[4] | Bennaceur K and Dobaczewski J 2005 Comput. Phys. Commun. 168 96 | Coordinate-space solution of the Skyrme–Hartree–Fock– Bogolyubov equations within spherical symmetry. The program HFBRAD (v1.00)
[5] | Skyrme T H R 1956 Philos. Mag. 1 1043 | CVII. The nuclear surface
1958 Nucl. Phys. 9 615 | The effective nuclear potential|
1958 Nucl. Phys. 9 635 | The spin-orbit interaction in nuclei|
[6] | Vautherin D and Brink D M 1972 Phys. Rev. C 5 626 | Hartree-Fock Calculations with Skyrme's Interaction. I. Spherical Nuclei
[7] | Stoitsov M V et al 2003 Phys. Rev. C 68 054312 | Systematic study of deformed nuclei at the drip lines and beyond
[8] | Teran E et al 2003 Phys. Rev. C 67 064314 | Axially symmetric Hartree-Fock-Bogoliubov calculations for nuclei near the drip lines
[9] | Pei J C et al 2005 Phys. Rev. C 71 034302 | Density distributions of superheavy nuclei
[10] | Goriely S 2015 Nucl. Phys. A 933 68 | Further explorations of Skyrme–Hartree–Fock–Bogoliubov mass formulas. XV: The spin–orbit coupling
[11] | Hofmann S and Münzenberg G 2000 Rev. Mod. Phys. 72 733 | The discovery of the heaviest elements
[12] | Blank B and Borge M J G 2008 Prog. Part. Nucl. Phys. 60 403 | Nuclear structure at the proton drip line: Advances with nuclear decay studies
[13] | Sorlin O and Porquet M G 2008 Prog. Part. Nucl. Phys. 61 602 | Nuclear magic numbers: New features far from stability
[14] | Tanihata I et al 1985 Phys. Rev. Lett. 55 2676 | Measurements of Interaction Cross Sections and Nuclear Radii in the Light -Shell Region
[15] | Wilson H A 1946 Phys. Rev. 69 538 | A Spherical Shell Nuclear Model
[16] | Campi X and Sprung D W L 1973 Phys. Lett. B 46 291 | Possible bubble nuclei -36Ar and 200Hg
[17] | Grasso M et al 2007 Phys. Rev. C 76 044319 | Evolution of the proton states in neutron-rich Ca isotopes
[18] | Khan E et al 2008 Nucl. Phys. A 800 37 | Detecting bubbles in exotic nuclei
[19] | Grasso M et al 2009 Phys. Rev. C 79 034318 | Nuclear “bubble” structure in
[20] | Grasso M et al 2009 Int. J. Mod. Phys. E 18 2009 | BUBBLES IN EXOTIC NUCLEI
[21] | Wang Y Z et al 2011 Phys. Rev. C 84 044333 | Tensor effects on the proton states in neutron-rich Ca isotopes and bubble structure of exotic nuclei
[22] | Wang Y Z et al 2011 Chin. Phys. Lett. 28 102101 | Tensor Effect on Bubble Nuclei
[23] | Wang Y Z et al 2013 Eur. Phys. J. A 49 15 | The effect of the tensor force on the bubble structure in Ar isotopes
[24] | Wang Y Z et al 2015 Phys. Rev. C 91 017302 | Effect of a tensor force on the proton bubble structure of
[25] | Wang Y Z et al 2014 Int. J. Mod. Phys. E 23 1450082 | Tensor force effect on incompressibility of bubble nucleus
[26] | Todd-Rutel B G et al 2004 Phys. Rev. C 69 021301(R) | Spin-orbit splitting in low- neutron orbits and proton densities in the nuclear interior
[27] | Bender M et al 1999 Phys. Rev. C 60 034304 | Shell structure of superheavy nuclei in self-consistent mean-field models
[28] | Afanasjev A V and Frauendorf S 2005 Phys. Rev. C 71 024308 | Central depression in nuclear density and its consequences for the shell structure of superheavy nuclei
[29] | Dechargé J et al 1999 Phys. Lett. B 451 275 | Superheavy and hyperheavy nuclei in the form of bubbles or semi-bubbles
[30] | Royer G et al 1999 Nucl. Phys. A 605 403 | Rotating bubble and toroidal nuclei and fragmentation
[31] | Nakada H et al 2013 Phys. Rev. C 87 067305 | Tensor-force effects on single-particle levels and proton bubble structure around the or magic number
[32] | Dechargé J et al 2003 Nucl. Phys. A 716 55 | Bubbles and semi-bubbles as a new kind of superheavy nuclei
[33] | Yao J M et al 2012 Phys. Rev. C 86 014310 | Beyond-mean-field study of the possible “bubble” structure of Si
[34] | Yao J M et al 2013 Phys. Lett. B 723 459 | Does a proton “bubble” structure exist in the low-lying states of 34Si?
[35] | Wu X Y et al 2014 Phys. Rev. C 89 017304 | Low-energy structure and anti-bubble effect of dynamical correlations in Ar
[36] | Schuetrumpf B et al 2017 Phys. Rev. C 96 024306 | Central depression in nucleonic densities: Trend analysis in the nuclear density functional theory approach
[37] | Wu F et al 2017 Eur. Phys. J. A 53 183 | Existence problem of proton semi-bubble structure in the 21 + state of 34Si
[38] | Duguet T et al 2017 Phys. Rev. C 95 034319 | Ab initio calculation of the potential bubble nucleus
[39] | Singh S K et al 2013 Int. J. Mod. Phys. E 22 1350001 | GROUND STATE PROPERTIES AND BUBBLE STRUCTURE OF SYNTHESIZED SUPERHEAVY NUCLEI
[40] | Li J J et al 2016 Phys. Rev. C 93 054312 | Pseudospin-orbit splitting and its consequences for the central depression in nuclear density
[41] | Luo Z J et al 2018 Eur. Phys. J. A 54 193 | Effects of deformation, pairing and tensor correlation on the evolution of bubble structure within the Skyrme-Hartree-Fock method
[42] | Sharma M K et al 2015 Chin. Phys. C 39 064102 | Nuclear structure study of some bubble nuclei in the light mass region using mean field formalism
[43] | Liu J et al 2012 Chin. Phys. C 36 48 | Theoretical study of the central depression of nuclear charge density distribution by electron scattering
[44] | Wang Z J et al 2014 Chin. Phys. C 38 024102 | Probe the 2 s 1/2 and 1 d 3/2 state level inversion with electron-nucleus scattering
[45] | Mutschler A et al 2017 Nat. Phys. 13 152 | A proton density bubble in the doubly magic 34Si nucleus
[46] | Changizi S A et al 2015 Nucl. Phys. A 940 210 | Empirical pairing gaps, shell effects, and di-neutron spatial correlation in neutron-rich nuclei
[47] | Changizi S A and Qi C 2015 Phys. Rev. C 91 024305 | Density dependence of the pairing interaction and pairing correlation in unstable nuclei
[48] | Changizi S A and Qi C 2016 Nucl. Phys. A 951 97 | Odd–even staggering in neutron drip line nuclei
[49] | Ko C M et al 1974 Nucl. Phys. A 236 269 | A microscopic, but not self-consistent approach to nuclear binding and deformation energies
[50] | Bertsch G F et al 2009 Phys. Rev. C 79 034306 | Odd-even mass differences from self-consistent mean field theory
[51] | Möller P and Nix J 1992 Nucl. Phys. A 536 20 | Nuclear pairing models
[52] | Duguet T et al 2001 Phys. Rev. C 65 014311 | Pairing correlations. II. Microscopic analysis of odd-even mass staggering in nuclei
[53] | Qi C and Chen T 2015 Phys. Rev. C 92 051304 | Exact solution of the pairing problem for spherical and deformed systems