[1] | Aasi J, Abadie J, Abbott B P et al 2013 Nat. Photon. 7 613 | Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light
[2] | Hinkley N, Sherman J A, Phillips N B et al 2013 Science 341 1215 | An Atomic Clock with 10-18 Instability
[3] | Geiger R, Ménoret V, Stern G et al 2011 Nat. Commun. 2 474 | Detecting inertial effects with airborne matter-wave interferometry
[4] | Esnault F X, Blanshan E, Ivanov E N et al 2013 Phys. Rev. A 88 042120 | Cold-atom double- coherent population trapping clock
[5] | Ma J, Huang Y X, Wang X et al 2011 Phys. Rev. A 84 022302 | Quantum Fisher information of the Greenberger-Horne-Zeilinger state in decoherence channels
[6] | Zhang Y M, Li X W, Yang W et al 2013 Phys. Rev. A 88 043832 | Quantum Fisher information of entangled coherent states in the presence of photon loss
[7] | Dorner U 2012 New J. Phys. 14 043011 | Quantum frequency estimation with trapped ions and atoms
[8] | Tan Q S, Huang Y X, Yin X L et al 2013 Phys. Rev. A 87 032102 | Enhancement of parameter-estimation precision in noisy systems by dynamical decoupling pulses
[9] | Lu X M, Yu S and Oh C H 2015 Nat. Commun. 6 7282 | Robust quantum metrological schemes based on protection of quantum Fisher information
[10] | Chin A W, Huelga S F and Plenio M B 2012 Phys. Rev. Lett. 109 233601 | Quantum Metrology in Non-Markovian Environments
[11] | Gong Q K, Li D, Yuan C H et al 2017 Chin. Phys. B 26 094205 | Phase estimation of phase shifts in two arms for an SU(1,1) interferometer with coherent and squeezed vacuum states
[12] | Wen J and Li G Q 2018 Chin. Phys. Lett. 35 060301 | Preservation of Quantum Coherence for Gaussian-State Dynamics in a Non-Markovian Process
[13] | Yang Y, Wang A M, Cao L Z et al 2018 Chin. Phys. Lett. 35 080301 | Frozen Quantum Coherence for a Central Two-Qubit System in a Spin-Chain Environment
[14] | Gao D Y, Gao Q and Xia Y J 2018 Chin. Phys. B 27 060304 | Classical-driving-assisted coherence dynamics and its conservation
[15] | Man Z X, Xia Y J and Franco R L 2015 Sci. Rep. 5 13843 | Cavity-based architecture to preserve quantum coherence and entanglement
[16] | Man Z X, Xia Y J and An N B 2014 Phys. Rev. A 89 013852 | On-demand control of coherence transfer between interacting qubits surrounded by a dissipative environment
[17] | Wiseman H M and Milburn G J 1993 Phys. Rev. A 47 642 | Quantum theory of field-quadrature measurements
[18] | Wang J, Wiseman H M and Milburn G J 2005 Phys. Rev. A 71 042309 | Dynamical creation of entanglement by homodyne-mediated feedback
[19] | Carvalho A R R and Hope J J 2007 Phys. Rev. A 76 010301 | Stabilizing entanglement by quantum-jump-based feedback
[20] | Li J G, Zou J, Shao B et al 2008 Phys. Rev. A 77 012339 | Steady atomic entanglement with different quantum feedbacks
[21] | Li Y, Luo B and Guo H 2011 Phys. Rev. A 84 012316 | Entanglement and quantum discord dynamics of two atoms under practical feedback control
[22] | Yu M, Fang M F and Zou H M 2018 Chin. Phys. B 27 010303 | Quantum speed limit time of a two-level atom under different quantum feedback control
[23] | Zheng Q, Ge L, Yao Y et al 2015 Phys. Rev. A 91 033805 | Enhancing parameter precision of optimal quantum estimation by direct quantum feedback
[24] | Zhang G and Zhu H 2016 Opt. Lett. 41 3932 | Surpassing the shot-noise limit by homodyne-mediated feedback
[25] | Ma S Q, Zhu H J and Zhang G F 2017 Phys. Lett. A 381 1386 | The effects of different quantum feedback operator types on the parameter precision of detection efficiency in optimal quantum estimation
[26] | Holevo A S 1982 Probabilistic and Statistical Aspects of Quantum Theory (Amsterdam: North-Holland) |
[27] | Liu J, Jing X and Wang X 2013 Phys. Rev. A 88 042316 | Phase-matching condition for enhancement of phase sensitivity in quantum metrology
[28] | Yamamoto N 2005 Phys. Rev. A 72 024104 | Parametrization of the feedback Hamiltonian realizing a pure steady state