Initial state | $|0'⟩$ | $|1'⟩$ | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Measurement base | $Z$ | $X$ | $Z$ | $X$ | |||||||
in step (6) | |||||||||||
Measurement result | $|0⟩$ | $|1⟩$ | $|+⟩$ | $|-⟩$ | $|0⟩$ | $|1⟩$ | $|+⟩$ | $|-⟩$ | |||
in step (6) | |||||||||||
The probability of | $\cos^{2} \fracπ{8}$ | $\sin^{2} \fracπ{8}$ | $\frac{1}{2}(\sin \fracπ{8} +\cos \fracπ{8})^{2}$ | $ \frac{1}{2}(\cos \fracπ{8}-\sin\fracπ{8})^{2} $ | $\sin^{2} \fracπ{8} $ | $ \cos^{2} \fracπ{8}$ | $ \frac{1}{2}(\cos \fracπ{8}-\sin \fracπ{8})^{2}$ | $ \frac{1}{2}(\sin \fracπ{8}+\cos\fracπ{8})^{2} $ | |||
corresponding result | |||||||||||
Bob's announcement | $|0⟩$ | $|+⟩$ | $|1⟩$ | $|-⟩$ | |||||||
Error rate | $\sin^{2} \fracπ{8} $ | $\frac{1}{2}(\cos \fracπ{8}-\sin\fracπ{8})^{2} $ | $\sin^{2} \fracπ{8} $ | $\frac{1}{2}(\cos \fracπ{8}-\sin\fracπ{8})^{2} $ |
Bob and | Resisting | Real-time | |
---|---|---|---|
Alice's ability | JM attack | security | |
Ref. [ | Q–Q | No | No |
Ref. [ | Q–Q | No | No |
Ref. [ | Q–Q | No | Yes |
Ref. [ | Q–C | Yes | No |
Ref. [ | Q–C | Yes | No |
Our protocol | C–C | Yes | Yes |
[1] | Gertner Y et al 2000 J. Comput. Syst. Sci. 60 592 | Protecting Data Privacy in Private Information Retrieval Schemes
[2] | Lo H K 1997 Phys. Rev. A 56 1154 | Insecurity of quantum secure computations
[3] | Chan P et al 2015 Sci. Rep. 4 5233 | Performing private database queries in a real-world environment using a quantum protocol
[4] | Konig R et al 2012 IEEE Trans. Inf. Theory 58 1962 | Unconditional Security From Noisy Quantum Storage
[5] | Hardy L and Kent A 2004 Phys. Rev. Lett. 92 157901 | Cheat Sensitive Quantum Bit Commitment
[6] | Giovannetti V et al 2008 Phys. Rev. Lett. 100 230502 | Quantum Private Queries
[7] | Jakobi M et al 2011 Phys. Rev. A 83 022301 | Practical private database queries based on a quantum-key-distribution protocol
[8] | Gao F et al 2012 Opt. Express 20 17411 | Flexible quantum private queries based on quantum key distribution
[9] | Maitra A et al 2017 Phys. Rev. A 95 042344 | Device-independent quantum private query
[10] | Yang Y G et al 2014 Optik 125 5538 | Secure quantum private query with real-time security check
[11] | Yu F et al 2015 Quantum Inf. Process. 14 4201 | Enhancing user privacy in SARG04-based private database query protocols
[12] | Wang T Y et al 2016 Int. J. Theor. Phys. 55 3309 | Robust Quantum Private Queries
[13] | Scarani V et al 2004 Phys. Rev. Lett. 92 057901 | Quantum Cryptography Protocols Robust against Photon Number Splitting Attacks for Weak Laser Pulse Implementations
[14] | Wei C Y et al 2016 Phys. Rev. A 93 042318 | Practical quantum private query with better performance in resisting joint-measurement attack
[15] | Boyer M et al 2007 Phys. Rev. Lett. 99 140501 | Quantum Key Distribution with Classical Bob
[16] | Yang Y G et al 2015 Quantum Inf. Process. 14 1017 | Private database queries using one quantum state
[17] | Dunjko V et al 2014 20th International Conference on the Theory, Application of Cryptology, Information Security (Kaoshiung December 7–11 2014) p 406 |
[18] | Dunjko V et al 2012 Phys. Rev. Lett. 108 200502 | Blind Quantum Computing with Weak Coherent Pulses
[19] | Sun Z et al 2015 Phys. Rev. A 91 052303 | Symmetrically private information retrieval based on blind quantum computing
[20] | Wang S et al 2012 Opt. Lett. 37 1008 | 2 GHz clock quantum key distribution over 260 km of standard telecom fiber
[21] | Wang S et al 2015 Nat. Photon. 9 832 | Experimental demonstration of a quantum key distribution without signal disturbance monitoring
[22] | Dinh H T et al 2013 Wireless Commun. Mobile Comput. 13 1587 | The Aneka platform and QoS-driven resource provisioning for elastic applications on hybrid Clouds