[1] | Shang H et al 2002 IEDM Tech. Dig. 17. 4 441 |
[2] | Wu N et al 2006 IEEE Electron Device Lett. 27 479 | Gate-first Germanium nMOSFET with CVD HfO/sub 2/ gate dielectric and silicon surface passivation
[3] | Amat E et al 2014 IEEE Trans. Device Mater. Reliab. 14 344 | Impact of FinFET and III–V/Ge Technology on Logic and Memory Cell Behavior
[4] | van Dal Mark J H et al 2014 IEEE Trans. Electron Devices 61 430 | Germanium p-Channel FinFET Fabricated by Aspect Ratio Trapping
[5] | Kim J et al 2014 IEEE Trans. Electron Devices 35 1185 | The Efficacy of Metal-Interfacial Layer-Semiconductor Source/Drain Structure on Sub-10-nm n-Type Ge FinFET Performances
[6] | Poljak M et al 2012 IEEE Trans. Electron Devices 59 1636 | Assessment of Electron Mobility in Ultrathin-Body InGaAs-on-Insulator MOSFETs Using Physics-Based Modeling
[7] | Haensch W et al 2006 IBM J. Res. Dev. 50 339 | Silicon CMOS devices beyond scaling
[8] | Luisier M and G Klimeck et al 1950 Phys. Rev. B 80 1 | The Molecular Spectrum of
[9] | Wang J et al 2005 Appl. Phys. Lett. 87 043101 | Theoretical investigation of surface roughness scattering in silicon nanowire transistors
[10] | Jin S et al 2006 J. Appl. Phys. 99 123719 | A three-dimensional simulation of quantum transport in silicon nanowire transistor in the presence of electron-phonon interactions
[11] | Frey M et al 2008 Proc. 38th ESSDERC p 258 |
[12] | Yang Y J et al 2007 Appl. Phys. Lett. 91 102103 | Electron mobility enhancement in strained-germanium n-channel metal-oxide-semiconductor field-effect transistors
[13] | Chang L et al 2004 IEEE Trans. Electron Devices 51 1621 | CMOS Circuit Performance Enhancement by Surface Orientation Optimization
[14] | Satô T et al 1971 Phys. Rev. B 4 1950 | Mobility Anisotropy of Electrons in Inversion Layers on Oxidized Silicon Surfaces
[15] | Stern F and Howard W E 1967 Phys. Rev. 163 816 | Properties of Semiconductor Surface Inversion Layers in the Electric Quantum Limit
[16] | Tanaka H et al 2014 IEEE Trans. Electron Devices 61 1993 | Phonon-Limited Electron Mobility in Rectangular Cross-Sectional Ge Nanowires
[17] | Schäffler F 1997 Semicond. Sci. Technol. 12 1515 | High-mobility Si and Ge structures
[18] | Niquet Y M et al 2009 Phys. Rev. B 79 245201 | Onsite matrix elements of the tight-binding Hamiltonian of a strained crystal: Application to silicon, germanium, and their alloys
[19] | Jacoboni C and Reggiani L 1983 Rev. Mod. Phys. 55 645 | The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials
[20] | Rahman A et al 2005 J. Appl. Phys. 97 053702 | Generalized effective-mass approach for n-type metal-oxide-semiconductor field-effect transistors on arbitrarily oriented wafers
[21] | Jungemann C et al 1993 Solid-State Electron. 36 1529 | Simulation of linear and nonlinear electron transport in homogeneous silicon inversion layers
[22] | Esseni D et al 2003 IEEE Trans. Electron Devices 50 2445 | Physically based modeling of low field electron mobility in ultrathin single- and double-gate SOI n-MOSFETs
[23] | Low T et al 2004 Appl. Phys. Lett. 85 2402 | Electron mobility in Ge and strained-Si channel ultrathin-body metal-oxide semi conductor field-effect transistors
[24] | Esseni D and Abramo A 2003 IEEE Trans. Electron Devices 50 1665 | Modeling of electron mobility degradation by remote coulomb scattering in ultrathin oxide MOSFETs
[25] | Gamiz F and Fischetti M V 2001 J. Appl. Phys. 89 5478 | Monte Carlo simulation of double-gate silicon-on-insulator inversion layers: The role of volume inversion