[1] | Jurcevic P, Shen H, Hauke P, Maier C, Brydges T, Hempel C, Lanyon B P, Heyl M, Blatt R and Roos C F 2017 Phys. Rev. Lett. 119 080501 | Direct Observation of Dynamical Quantum Phase Transitions in an Interacting Many-Body System
[2] | Fläschner N, Vogel D, Tarnowski M, Rem B S, Lühmann D S, Heyl M, Budich J C, Mathey L, Sengstock K and Weitenberg C 2018 Nat. Phys. 14 265 | Observation of dynamical vortices after quenches in a system with topology
[3] | Heyl M 2018 Rep. Prog. Phys. 81 054001 | Dynamical quantum phase transitions: a review
[4] | Schreiber M, Hodgman S S, Bordia P, Lüschen H P, Fischer M H, Vosk R, Altman E, Schneider U and Bloch I 2015 Science 349 842 | Observation of many-body localization of interacting fermions in a quasirandom optical lattice
[5] | Choi J, Hild S, Zeiher J, Schauß P, Rubio-Abadal A, Yefsah T, Khemani V, Huse D A, Bloch I and Gross C 2016 Science 352 1547 | Exploring the many-body localization transition in two dimensions
[6] | Smith J, Lee A, Richerme P, Neyenhuis B, Hess P W, Hauke P, Heyl M, Huse D A and Monroe C 2016 Nat. Phys. 12 907 | Many-body localization in a quantum simulator with programmable random disorder
[7] | Bordia P, Lüschen H, Schneider U, Knap M and Bloch I 2017 Nat. Phys. 13 460 | Periodically driving a many-body localized quantum system
[8] | Bordia P, Lüschen H, Scherg S, Gopalakrishnan S, Knap M, Schneider U and Bloch I 2017 Phys. Rev. X 7 041047 | Probing Slow Relaxation and Many-Body Localization in Two-Dimensional Quasiperiodic Systems
[9] | Lüschen H P, Bordia P, Hodgman S S, Schreiber M, Sarkar S, Daley A J, Fischer M H, Altman E, Bloch I and Schneider U 2017 Phys. Rev. X 7 011034 | Signatures of Many-Body Localization in a Controlled Open Quantum System
[10] | Lüschen H P, Bordia P, Scherg S, Alet F, Altman E, Schneider U and Bloch I 2017 Phys. Rev. Lett. 119 260401 | Observation of Slow Dynamics near the Many-Body Localization Transition in One-Dimensional Quasiperiodic Systems
[11] | Nandkishore R and Huse D A 2015 Annu. Rev. Condens. Matter Phys. 6 15 | Many-Body Localization and Thermalization in Quantum Statistical Mechanics
[12] | Altman E and Vosk R 2015 Annu. Rev. Condens. Matter Phys. 6 383 | Universal Dynamics and Renormalization in Many-Body-Localized Systems
[13] | Abanin D A and Papić Z 2017 Ann. Phys. (Berlin) 529 1700169 | Recent progress in many-body localization
[14] | Alet F and Laflorencie N 2018 C. R. Phys. 19 498 | Many-body localization: An introduction and selected topics
[15] | Deutsch J M 1991 Phys. Rev. A 43 2046 | Quantum statistical mechanics in a closed system
[16] | Srednicki M 1994 Phys. Rev. E 50 888 | Chaos and quantum thermalization
[17] | Deutsch J M 2018 Rep. Prog. Phys. 81 082001 | Eigenstate thermalization hypothesis
[18] | Rigol M, Dunjko V and Olshanii M 2008 Nature 452 854 | Thermalization and its mechanism for generic isolated quantum systems
[19] | Z̆nidaric̆ M, Prosen T and Prelovs̆ek P 2008 Phys. Rev. B 77 064426 | Many-body localization in the Heisenberg magnet in a random field
[20] | Bardarson J H, Pollmann F and Moore J E 2012 Phys. Rev. Lett. 109 017202 | Unbounded Growth of Entanglement in Models of Many-Body Localization
[21] | Serbyn M, ZPapić Z and Abanin D A 2013 Phys. Rev. Lett. 110 260601 | Universal Slow Growth of Entanglement in Interacting Strongly Disordered Systems
[22] | Vosk R and Altman E 2013 Phys. Rev. Lett. 110 067204 | Many-Body Localization in One Dimension as a Dynamical Renormalization Group Fixed Point
[23] | Griffiths R B 1969 Phys. Rev. Lett. 23 17 | Nonanalytic Behavior Above the Critical Point in a Random Ising Ferromagnet
[24] | Agarwal K, Gopalakrishnan S, Knap M, Müller M and Demler E 2015 Phys. Rev. Lett. 114 160401 | Anomalous Diffusion and Griffiths Effects Near the Many-Body Localization Transition
[25] | Gopalakrishnan S, Müller M, Khemani V, Knap M, Demler E and Huse D A 2015 Phys. Rev. B 92 104202 | Low-frequency conductivity in many-body localized systems
[26] | Vosk R, Huse D A and Altman E 2015 Phys. Rev. X 5 031032 | Theory of the Many-Body Localization Transition in One-Dimensional Systems
[27] | Gopalakrishnan S, Agarwal K, Demler E A, Huse D A and Knap M 2016 Phys. Rev. B 93 134206 | Griffiths effects and slow dynamics in nearly many-body localized systems
[28] | Luitz D J, Laflorencie N and Alet F 2016 Phys. Rev. B 93 060201(R) | Extended slow dynamical regime close to the many-body localization transition
[29] | Agarwal K, Altman E, Demler E, Gopalakrishnan S, Huse D A and Knap M 2017 Ann. Phys. (Berlin) 529 1600326 | Rare-region effects and dynamics near the many-body localization transition
[30] | Oganesyan V and Huse D A 2007 Phys. Rev. B 75 155111 | Localization of interacting fermions at high temperature
[31] | Pal A and Huse D A 2010 Phys. Rev. B 82 174411 | Many-body localization phase transition
[32] | Iyer S, Oganesyan V, Refael G and Huse D A 2013 Phys. Rev. B 87 134202 | Many-body localization in a quasiperiodic system
[33] | Modak R and Mukerjee S 2014 New J. Phys. 16 093016 | Finite size scaling in crossover among different random matrix ensembles in microscopic lattice models
[34] | Ponte P, Papić Z, Huveneers F and Abanin D A 2015 Phys. Rev. Lett. 114 140401 | Many-Body Localization in Periodically Driven Systems
[35] | Serbyn M and Moore J E 2016 Phys. Rev. B 93 041424(R) | Spectral statistics across the many-body localization transition
[36] | D'Alessio L, Kafri Y, Polkovnikov A and Rigol M 2016 Adv. Phys. 65 239 | From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics
[37] | Sierant P, Delande D and Zakrzewski J 2017 Phys. Rev. A 95 021601(R) | Many-body localization due to random interactions
[38] | Lukin A, Rispoli M, Schittko R, Tai M E, Kaufman A M, Choi S, Khemani V, Léonard J and Greiner M 2018 arXiv:1805.09819[cond-mat.quant-gas] | Probing entanglement in a many-body-localized system
[39] | Bakr W S, Gillen J I, Peng A, Fölling S and Greiner M 2009 Nature 462 74 | A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice
| Bakr W S, Peng A, Tai M E, Ma R, Simon J, Gillen J I, Fölling F, Pollet L and Greiner M 2010 Science 329 547 | Probing the Superfluid-to-Mott Insulator Transition at the Single-Atom Level
[40] | Sherson J F, Weitenberg C, Endres M, Cheneau M, Bloch I and Kuhr S 2010 Nature 467 68 | Single-atom-resolved fluorescence imaging of an atomic Mott insulator
| Endres M, Cheneau M, Fukuhara T, Weitenberg C, Schauß P, Gross C, Mazza L, Ba nuls M C, Pollet L, Bloch I and Kuhr S 2011 Science 334 200 | Observation of Correlated Particle-Hole Pairs and String Order in Low-Dimensional Mott Insulators
[41] | Kaufman A M, Tai M E, Lukin A, Rispoli M, Schittko R, Preiss P M and Greiner M 2016 Science 353 794 | Quantum thermalization through entanglement in an isolated many-body system
[42] | Aubry S and André G 1980 Ann. Isr. Phys. Soc. 3 133 |
[43] | Roati G, D'Errico C, Fallani L, Fattori M, Fort C, Zaccanti M, Modugno G, Modugno M and Inguscio M 2008 Nature 453 895 | Anderson localization of a non-interacting Bose–Einstein condensate
[44] | Bauer B et al 2011 J. Stat. Mech. 2011 P05001 | The ALPS project release 2.0: open source software for strongly correlated systems
| Dolfi M, Bauer B, Keller S, Kosenkov A, Ewart T, Kantian A, Giamarchi T and Troyer M 2014 Comput. Phys. Commun. 185 3430 | Matrix product state applications for the ALPS project
| http://alps.comp-phys.org |
[45] | The single-site entanglement entropy is obtained by calculating the number probabilities on site $i$, and in ALPS it is equivalent to calculate the expectation value of the projection operator $\hat{p}_{n_i}=[\prod_{m=1, m\neq n_i}^N(\hat{n}-m)]/[\prod_{m=1, m\neq n_i}^N(n_i-m)]$. |
[46] | Kollath C, Läuchli A M and Altman E 2007 Phys. Rev. Lett. 98 180601 | Quench Dynamics and Nonequilibrium Phase Diagram of the Bose-Hubbard Model
[47] | Torres-Herrera E J and Santos L F 2015 Phys. Rev. B 92 014208 | Dynamics at the many-body localization transition
[48] | Kucsko G, Choi S, Choi J, Maurer P C, Zhou H, Landig R, Sumiya H, Onoda S, Isoya J, Jelezko F, Demler E, Yao N Y and Lukin M D 2018 Phys. Rev. Lett. 121 023601 | Critical Thermalization of a Disordered Dipolar Spin System in Diamond