[1] | Lindl J D 1998 Inertial Confinement Fusion (Springer: New York) |
| Atzeni S and Meyer-ter-Vehn J 2004 The Physics of Inertial Fusion (Oxford: Clarendon Press) |
[2] | Zhou Y 2017 Phys. Rep. 720 1 |
| Zhou Y 2017 Phys. Rep. 723 1 | Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I
[3] | Edwards M J, Patel P K, Lindl J D et al 2013 Phys. Plasmas 20 070501 | Progress towards ignition on the National Ignition Facility
[4] | Smalyuk V A, Goncharov V N, Anderson K S et al 2007 Phys. Plasmas 14 032702 | Measurements of the effects of the intensity pickets on laser imprinting for direct-drive, adiabat-shaping designs on OMEGA
[5] | Ma T, Patel P K, Izumi N, Springer P T et al 2013 Phys. Rev. Lett. 111 085004 | Onset of Hydrodynamic Mix in High-Velocity, Highly Compressed Inertial Confinement Fusion Implosions
[6] | Regan S P, Epstein R, Hammel B A et al 2012 Phys. Plasmas 19 056307 | Hot-spot mix in ignition-scale implosions on the NIF
[7] | Hurricane O A, Callahan D A, Casey D T et al 2014 Nature 506 343 | Fuel gain exceeding unity in an inertially confined fusion implosion
[8] | Gardner J H, Bodner S E and Dahlburg J P 1991 Phys. Fluids B 3 1070 | Numerical simulation of ablative Rayleigh–Taylor instability
[9] | Velikovich A L, Cochran F L and Davis J 1996 Phys. Rev. Lett. 77 853 | Suppression of Rayleigh-Taylor Instability in -Pinch Loads with Tailored Density Profiles
[10] | Bodner S E, Colombant D G, Gardner J H et al 1998 Phys. Plasmas 5 1901 | Direct-drive laser fusion: Status and prospects
[11] | Goncharov V N, Knauer J P, McKenty P W et al 2003 Phys. Plasmas 10 1906 | Improved performance of direct-drive inertial confinement fusion target designs with adiabat shaping using an intensity picket
[12] | Anderson K and Betti R 2003 Phys. Plasmas 10 4448 | Theory of laser-induced adiabat shaping in inertial fusion implosions: The decaying shock
[13] | Betti R, Anderson K, Knauer J et al 2005 Phys. Plasmas 12 042703 | Theory of laser-induced adiabat shaping in inertial fusion implosions: The relaxation method
[14] | Campbell E M, Goncharov V N, Sangster T C et al 2017 MRE 2 37 | Analisa Pengaruh Variasi Diameter Pipa Tekan PVC Pada Pompa Rotari Untuk Kecepatan Gaya Dorong Air
[15] | Clark D S, Milovich J L, Hinkel D E et al 2014 Phys. Plasmas 21 112705 | A survey of pulse shape options for a revised plastic ablator ignition design
[16] | Peterson J L, Berzak Hopkins L F, Jones O S and Clark D S 2015 Phys. Rev. E 91 031101 | Differential ablator-fuel adiabat tuning in indirect-drive implosions
[17] | Robey H F, Smalyuk V A, Milovich J L et al 2016 Phys. Plasmas 23 056303 | Performance of indirectly driven capsule implosions on the National Ignition Facility using adiabat-shaping
[18] | Goncharov V N, Gotchev O V, Vianello E et al 2006 Phys. Plasmas 13 012702 | Early stage of implosion in inertial confinement fusion: Shock timing and perturbation evolution
[19] | Peterson J L, Clark D S, Masse L P et al 2014 Phys. Plasmas 21 092710 | The effects of early time laser drive on hydrodynamic instability growth in National Ignition Facility implosions
[20] | Landen O L, Baker K L, Clark D S et al 2016 J. Phys.: Conf. Ser. 717 012034 | Indirect-drive ablative Richtmyer Meshkov node scaling
[21] | He X T, Li J W, Fan Z F et al 2016 Phys. Plasmas 23 082706 | A hybrid-drive nonisobaric-ignition scheme for inertial confinement fusion
[22] | Wang L F, Ye W H, Wu J F et al 2016 Phys. Plasmas 23 052713 | A scheme for reducing deceleration-phase Rayleigh–Taylor growth in inertial confinement fusion implosions
[23] | Wang L F, Ye W H, Wu J F et al 2016 Phys. Plasmas 23 122702 | Main drive optimization of a high-foot pulse shape in inertial confinement fusion implosions
[24] | He X T and Zhang W Y 2007 Eur. Phys. J. D 44 227 | Inertial fusion research in China
[25] | Ye W H, Zhang W Y and Chen G N 1998 High Power Laser Part. Beams 10 403 (in Chinese) |
[26] | Ye W H, Zhang W Y and He X T 2002 Phys. Rev. E 65 57401 | Stabilization of ablative Rayleigh-Taylor instability due to change of the Atwood number
[27] | Wang L F, Xue C, Ye W H and Li Y J 2009 Phys. Plasmas 16 112104 | Destabilizing effect of density gradient on the Kelvin–Helmholtz instability
[28] | Clark D S, Haan S W, Hammel B A et al 2010 Phys. Plasmas 17 052703 | Plastic ablator ignition capsule design for the National Ignition Facility
[29] | Hammel B A, Haan S W, Clark D S et al 2010 High Energy Density Phys. 6 171 | High-mode Rayleigh-Taylor growth in NIF ignition capsules
[30] | Holmos R L, Dimonte G, Fryxell B et al 1999 J. Fluid Mech. 389 55 | Richtmyer–Meshkov instability growth: experiment, simulation and theory
[31] | Wouchuk J G and Cobos-Campos F 2017 Plasma Phys. Control. Fusion 59 014033 | Linear theory of Richtmyer–Meshkov like flows
[32] | MacPhee A G, Casey D T, Clark D S et al 2017 Phys. Rev. E 95 031204 | X-ray shadow imprint of hydrodynamic instabilities on the surface of inertial confinement fusion capsules by the fuel fill tube