Physically Realizable Broadband Acoustic Metamaterials with Anisotropic Density

Funds: Supported by the National Natural Science Foundation of China under Grant Nos 11004250 and 51275519.
  • Received Date: October 28, 2018
  • Published Date: January 31, 2019
  • Transformation acoustics are concentrated for the purpose of designing novel acoustic devices to tailor acoustic waves to achieve desirable characteristics. However, these devices require fluid or fluid-like materials with an anisotropic density that generally does not exist in nature. Therefore, we introduce pentamode metamaterials into an alternating multilayer isotropic medium model to build fluid-like metamaterials with an anisotropic density. A 2D acoustic bending based on transformation acoustics is established and investigated to verify our method. This idea provides a method to design broadband and physically realizable acoustic metamaterials with an anisotropic density and is meaningful for the design of acoustic metamaterials.
  • Article Text

  • [1]
    Cummer S A, Christensen J and Alu A 2016 Nat. Rev. Mater. 1 16001 doi: 10.1038/natrevmats.2016.1

    CrossRef Google Scholar

    [2]
    Chen H and Chan C T 2010 J. Phys. D 43 113001 doi: 10.1088/0022-3727/43/11/113001

    CrossRef Google Scholar

    [3]
    Norris A N 2008 Proc. R. Soc. London A 464 2411 doi: 10.1098/rspa.2008.0076

    CrossRef Google Scholar

    [4]
    Zigoneanu L, Popa B I, Starr A F and Cummer S A 2011 J. Appl. Phys. 109 054906 doi: 10.1063/1.3552990

    CrossRef Google Scholar

    [5]
    Bi Y F, Han J, Lu W J, Ji P and Yang J 2017 Sci. Rep. 7 705 doi: 10.1038/s41598-017-00779-4

    CrossRef Google Scholar

    [6]
    Bi Y F, Jia H, Sun Z Y, Yang Y Z, Zhao H and Yang J 2018 Appl. Phys. Lett. 112 223502 doi: 10.1063/1.5026199

    CrossRef Google Scholar

    [7]
    Chen Y, Liu X N and Hu G K 2015 Sci. Rep. 5 15745 doi: 10.1038/srep15745

    CrossRef Google Scholar

    [8]
    Akl W and Baz A 2012 J. Appl. Phys. 111 044505 doi: 10.1063/1.3686210

    CrossRef Google Scholar

    [9]
    Lu W J, Jia H, Bi Y F, Yang Y Z and Yang J 2017 J. Acoust. Soc. A 142 84 doi: 10.1121/1.4990952

    CrossRef Google Scholar

    [10]
    Sun Z Y, Jia H, Chen Y, Wang Z and Yang J 2018 J. Acoust. Soc. A 143 1029 doi: 10.1121/1.5024351

    CrossRef Google Scholar

    [11]
    Wu L Y, Chiang T Y, Tsai C N, Wu M L and Chen L W 2012 Appl. Phys. A 109 523 doi: 10.1007/s00339-012-7296-5

    CrossRef Google Scholar

    [12]
    Zhao L, Conlon S C and Semperlotti F 2014 Smart Mater. Struct. 23 065021 doi: 10.1088/0964-1726/23/6/065021

    CrossRef Google Scholar

    [13]
    Xu T, Zhu X F, Liang B, Li Y, Zou X Y and Cheng J C 2012 Appl. Phys. Lett. 101 033509 doi: 10.1063/1.4737873

    CrossRef Google Scholar

    [14]
    Cai L, Wen J H, Yu D L, Lu Z M and Wen X S 2014 Chin. Phys. Lett. 31 094303 doi: 10.1088/0256-307X/31/9/094303

    CrossRef Google Scholar

    [15]
    Cummer S A and Schurig D 2007 New J. Phys. 9 45 doi: 10.1088/1367-2630/9/3/045

    CrossRef Google Scholar

    [16]
    Cheng Y, Yang F, Xu J Y and Liu X J 2008 Appl. Phys. Lett. 92 151913 doi: 10.1063/1.2903500

    CrossRef Google Scholar

    [17]
    Liu Z Y, Zhang X X, Mao Y, Zhu Y Y, Yang Z, Chan C T and Sheng P 2012 Science 338 201 doi: 10.1126/science.1230718

    CrossRef Google Scholar

    [18]
    Torrent D and Sánchezdehesa J 2008 New J. Phys. 10 063015 doi: 10.1088/1367-2630/10/6/063015

    CrossRef Google Scholar

    [19]
    Torrent D and Sánchezdehesa J 2010 Phys. Rev. Lett. 105 174301 doi: 10.1103/PhysRevLett.105.174301

    CrossRef Google Scholar

    [20]
    Zhang S, Xia C and Fang N 2011 Phys. Rev. Lett. 106 024301 doi: 10.1103/PhysRevLett.106.024301

    CrossRef Google Scholar

    [21]
    Norris A 2011 J. Acoust. Soc. Am. 130 2359 doi: 10.1121/1.3654451

    CrossRef Google Scholar

    [22]
    Gokhale N H, Cipolla J L and Norris A N 2012 J. Acoust. Soc. Am. 132 2932 doi: 10.1121/1.4744938

    CrossRef Google Scholar

    [23]
    Milton G W and Cherkaev A 1995 J. Eng. Mater. T 117 483 doi: 10.1115/1.2804743

    CrossRef Google Scholar

    [24]
    Kadic M, Bückmann T, Schittny R and Wegener M 2013 New J. Phys. 15 023029 doi: 10.1088/1367-2630/15/2/023029

    CrossRef Google Scholar

    [25]
    Layman C N, Naify C J, Martin T P, Calvo D C and Orris G J 2013 Phys. Rev. Lett. 111 024302 doi: 10.1103/PhysRevLett.111.024302

    CrossRef Google Scholar

    [26]
    Su X, Norris A N, Cushing C W, Haberman M R and Wilson P S 2017 J. Acoust. Soc. A 141 4408 doi: 10.1121/1.4985195

    CrossRef Google Scholar

    [27]
    Fu M H and Yin J R 1999 Acta Mech. Sin. 31 133 in Chinese

    Google Scholar

    [28]
    Gibson L J and Ashby M F 1982 Proc. R. Soc. London 382 43 doi: 10.1098/rspa.1982.0088

    CrossRef Google Scholar

Catalog

    Article views (310) PDF downloads (557) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return