[1] | Tokito S et al 1996 J. Phys. D 29 2750 | Metal oxides as a hole-injecting layer for an organic electroluminescent device
[2] | Wang Z B et al 2009 Phys. Rev. B 80 235325 | Analysis of charge-injection characteristics at electrode-organic interfaces: Case study of transition-metal oxides
[3] | Qiu C F et al 2003 J. Appl. Phys. 93 3253 | Comparative study of metal or oxide capped indium–tin oxide anodes for organic light-emitting diodes
[4] | Murdoch G B et al 2008 Appl. Phys. Lett. 93 083309 | A comparison of CuO and Cu2O hole-injection layers for low voltage organic devices
[5] | Greiner M T et al 2012 Nat. Mater. 11 76 | Universal energy-level alignment of molecules on metal oxides
[6] | Meyer J et al 2012 Adv. Mater. 24 5408 | Transition Metal Oxides for Organic Electronics: Energetics, Device Physics and Applications
[7] | Irfan I and Gao Y 2015 Improvement of Charge Transfer between Electrode, Semiconductor by Thin Metal Oxide Insertion in Topics in Applied Physics ed Yang Y and Li G (Berlin: Heidelberger) PLATZ 3, D-14197 vol 130 p 67 |
[8] | Wang C et al 2014 Appl. Phys. Lett. 105 181602 | Protection of MoO 3 high work function by organic thin film
[9] | Ke J et al 2015 Sol. Energy Mater. Sol. Cells 133 248 | Effect of open-circuit voltage in organic solar cells based on various electron donor materials by inserting molybdenum trioxide anode buffer layer
[10] | Liu W et al 2015 Chin. Phys. Lett. 32 077206 | Improvement of Performance of Organic Light-Emitting Diodes with Both a MoO 3 Hole Injection Layer and a MoO 3 Doped Hole Transport Layer
[11] | Wang H et al 2010 J. Appl. Phys. 107 024510 | Organic-inorganic heterojunction field-effect transistors
[12] | Zhao G et al 2011 Chin. Phys. Lett. 28 127203 | Improved Performance of Pentacene Organic Field-Effect Transistors by Inserting a V 2 O 5 Metal Oxide Layer
[13] | Yeh T et al 2018 Org. Electron. 59 266 | Vacuum-deposited MoO3/Ag/WO3 multilayered electrode for highly efficient transparent and inverted organic light-emitting diodes
[14] | Lee J et al 2019 J. Appl. Phys. 125 145501 | Highly efficient top-emission organic light-emitting diode on an oxidized aluminum anode
[15] | Subbiah J et al 2012 ACS Appl. Mater. & Interfaces 4 866 | High-Efficiency Inverted Polymer Solar Cells with Double Interlayer
[16] | Matsushima T, Kinoshita Y and Murata H 2007 Appl. Phys. Lett. 91 253504 | Formation of Ohmic hole injection by inserting an ultrathin layer of molybdenum trioxide between indium tin oxide and organic hole-transporting layers
[17] | Kroeger M, Hamwi S, Meyer J, Riedl T, Kowalsky W and Kahn A 2009 Appl. Phys. Lett. 95 123301 | Role of the deep-lying electronic states of MoO3 in the enhancement of hole-injection in organic thin films
[18] | Li L, Liu X, Lyu L, Wu R, Liu P, Zhang Y, Zhao Y, Wang H, Niu D, Yang J and Gao Y 2016 J. Phys. Chem. C 120 17863 | Modification of Ultrathin NPB Interlayer on the Electronic Structures of the CH 3 NH 3 PbI 3 /NPB/MoO 3 Interface
[19] | He Z, Yu H, Peng H and Hou X 2015 Chin. Phys. B 24 097201 | Effect of CuPc and Mo O 3 co-evaporated layer on the conductivity of organic light emitting diodes
[20] | Zhao Y, Zhang J, Liu S, Gao Y, Yang X, Leck K S, Abiyasa A P, Divayana Y, Mutlugun E, Tan S T, Xiong Q, Demir H V and Sun X W 2014 Org. Electron. 15 871 | Transition metal oxides on organic semiconductors
[21] | Hamwi S, Meyer J, Kroeger M, Winkler T, Witte M, Riedl T, Kahn A and Kowalsky W 2010 Adv. Funct. Mater. 20 1762 | The Role of Transition Metal Oxides in Charge-Generation Layers for Stacked Organic Light-Emitting Diodes
[22] | Meyer J, Kröger M, Hamwi S, Gnam F, Riedl T, Kowalsky W and Kahn A 2010 Appl. Phys. Lett. 96 193302 | Charge generation layers comprising transition metal-oxide/organic interfaces: Electronic structure and charge generation mechanism
[23] | Qi X, Li N and Forrest S R 2010 J. Appl. Phys. 107 014514 | Analysis of metal-oxide-based charge generation layers used in stacked organic light-emitting diodes
[24] | Yang J, Bao Q, Xiao Y, Deng Y, Li Y, Lee S and Tang J 2012 Org. Electron. 13 2243 | Hybrid intermediate connector for tandem OLEDs with the combination of MoO3-based interlayer and p-type doping
[25] | Yang J, Xiao Y, Deng Y, Duhm S, Ueno N, Lee S, Li Y and Tang J 2012 Adv. Funct. Mater. 22 600 | Electric-Field-Assisted Charge Generation and Separation Process in Transition Metal Oxide-Based Interconnectors for Tandem Organic Light-Emitting Diodes
[26] | Yu A R, Pei Y, Yi R C, Liu S B, Chu M, Yu H M, Tang Y J, He Z S and Hou X Y 2017 Org. Electron. 46 121 | Study on mobile hole generation in blend MoO 3 :CuPc by capacitance-voltage method
[27] | Tsai C, Liu Y, Tang J, Kao P, Chiang C and Chu S 2018 Synth. Met. 243 121 | Effects of novel transition metal oxide doped bilayer structure on hole injection and transport characteristics for organic light-emitting diodes
[28] | Zhang S T, Wang Z J, Zhao J M, Zhan Y Q, Wu Y, Zhou Y C, Ding X M, Hou X Y 2004 Appl. Phys. Lett. 84 2916 | Electron blocking and hole injection: The role of N,N′-Bis(naphthalen-1- y )-N,N′-bis(phenyl)benzidine in organic light-emitting devices
[29] | Parker I D 1994 J. Appl. Phys. 75 1656 | Carrier tunneling and device characteristics in polymer light‐emitting diodes
[30] | Meng Y, Ji H and Sun Q 2013 The Mechanism of Modification Effect of MoO$_3$ on Al Anode of Top-Emitting Organic Light-Emitting Device (Beijing: People's Press) (in Chinese) |
[31] | Wang X J, Zhao J M, Zhou Y C, Wang X Z, Zhang S T, Zhan Y Q, Xu Z, Ding H J, Zhong G Y, Shi H Z, Xiong Z H, Liu Y, Wang Z J, Obbard E G, Ding X M, Huang W and Hou X Y 2004 J. Appl. Phys. 95 3828 | Enhancement of electron injection in organic light-emitting devices using an Ag/LiF cathode
[32] | Deng Z B, Ding X M, Lee S T and Gambling W A 1999 Appl. Phys. Lett. 74 2227 | Enhanced brightness and efficiency in organic electroluminescent devices using SiO2 buffer layers
[33] | Zhu F R, Low B L, Zhang K R and Chua S J 2001 Appl. Phys. Lett. 79 1205 | Lithium–fluoride-modified indium tin oxide anode for enhanced carrier injection in phenyl-substituted polymer electroluminescent devices
[34] | Zhan Y Q, Xiong Z H, Shi H Z, Zhang S T, Xu Z, Zhong G Y, He J, Zhao J M, Wang Z J, Obbard E, Ding H J, Wang X J, Ding X M, Huang W and Hou X Y 2003 Appl. Phys. Lett. 83 1656 | Sodium stearate, an effective amphiphilic molecule buffer material between organic and metal layers in organic light-emitting devices
[35] | Sun Z, Ding X, Ding B, Gao X, Hu Y, Chen X, He Y and Hou X 2013 Org. Electron. 14 511 | Buffer-enhanced electron injection in organic light-emitting devices with copper cathode
[36] | Sun Z, Ding B, Wu B, You Y, Ding X and Hou X 2012 J. Phys. Chem. C 116 2543 | LiF Layer at the Interface of Au Cathode in Organic Light-Emitting Devices: A Nonchemical Induced Carrier Injection Enhancement
[37] | Hu Y M, He Y, Chen X Q, Zhan Y Q, Sun Z Y, You Y T and Hou X Y 2012 Appl. Phys. Lett. 100 163303 | Obvious efficiency enhancement of organic light-emitting diodes by parylene-N buffer layer
[38] | Liu X, Wang C, Wang C, Irfan I and Gao Y 2015 Org. Electron. 17 325 | Interfacial electronic structures of buffer-modified pentacene/C60-based charge generation layer