Photoexcited Blueshift and Redshift Switchable Metamaterial Absorber at Terahertz Frequencies

Funds: Supported by the National Key Research and Development Program of China under Grant No. 2017YFA0700202.
  • Received Date: July 18, 2019
  • Published Date: November 30, 2019
  • We propose a design and numerical study of an optically blueshift and redshift switchable metamaterial (MM) absorber in the terahertz regime. The MM absorber comprises a periodic array of metallic split-ring resonators (SRRs) with semiconductor silicon embedded in the gaps of MM resonators. The absorptive frequencies of the MM can be shifted by applying an external pump power. The simulation results show that, for photoconductivity of silicon ranging between 1 S/m and 4000 S/m, the resonance peak of the absorption spectra shifts to higher frequencies, from 0.67 THz to 1.63 THz, with a resonance tuning range of 59%. As the conductivity of silicon increases, the resonance frequencies of the MM absorber are continuously tuned from 1.60 THz to 1.16 THz, a redshift tuning range of 28%. As the conductivity increases above 30000 S/m, the resonance frequencies tend to be stable while the absorption peak has a merely tiny variation. The optical-tuned absorber has potential applications as a terahertz modulator or switch.
  • Article Text

  • [1]
    Chen H T, Padilla W J, Zide J M O, Gossard A C, Taylor A J and Averitt R D 2006 Nature 444 597 doi: 10.1038/nature05343}

    CrossRef Google Scholar

    [2]
    Chen H T, O'Hara J F, Azad A K, Taylor A J, Averitt R D, Shrekenhamer D B and Padilla W J 2008 Nat. Photon. 2 295 doi: 10.1038/nphoton.2008.52}

    CrossRef Google Scholar

    [3]
    Tao H, Landy N I, Bingham C M, Zhang X, Averitt R D and Padilla W J 2008 Opt. Express 16 7181 doi: 10.1364/OE.16.007181}

    CrossRef Google Scholar

    [4]
    Iwaszczuk K, Strikwerda A C, Fan K, Zhang X, Averitt R D and Jepsen P U 2012 Opt. Express 20 635 doi: 10.1364/OE.20.000635}

    CrossRef Google Scholar

    [5]
    Ferguson B and Zhang X C 2002 Nat. Mater. 1 26 doi: 10.1038/nmat708}

    CrossRef Google Scholar

    [6]
    Tonouchi M 2007 Nat. Photon. 1 97 doi: 10.1038/nphoton.2007.3}

    CrossRef Google Scholar

    [7]
    O'Hara J F et al. 2008 Opt. Express 16 1786 doi: 10.1364/OE.16.001786}

    CrossRef Google Scholar

    [8]
    Chiang Y J, Yang C S, Yang Y H, Pan C L and Yen T J 2011 Appl. Phys. Lett. 99 191909

    Google Scholar

    [9]
    Hao J, Wang J, Liu X, Padilla W J, Zhou L and Qiu M 2010 Appl. Phys. Lett. 96 251104 doi: 10.1063/1.3442904}

    CrossRef Google Scholar

    [10]
    Ma Y, Chen Q, Grant J, Saha S C, Khalid A and Smith D R 2011 Opt. Lett. 36 945 doi: 10.1364/OL.36.000945}

    CrossRef Google Scholar

    [11]
    Shrekenhamer D, Xu W, Venkatesh S, Schurig D, Sonkusale S and Padilla W J 2012 Phys. Rev. Lett. 109 177401 doi: 10.1103/PhysRevLett.109.177401}

    CrossRef Google Scholar

    [12]
    Landy N I, Sajuyibge S, Mock J J, Smith D R and Padilla W J 2008 Phys. Rev. Lett. 100 207402 doi: 10.1103/PhysRevLett.100.207402}

    CrossRef Google Scholar

    [13]
    Shen X P, Cui T J, Zhao J, Ma H F, Jiang W X and L I H 2011 Opt. Express 19 9401 doi: 10.1364/OE.19.009401}

    CrossRef Google Scholar

    [14]
    Wen Q Y, Zhang H W, Xie Y S, Yang Q H and Liu Y L 2009 Appl. Phys. Lett. 95 241111 doi: 10.1063/1.3276072}

    CrossRef Google Scholar

    [15]
    Xiong H, Hong J S, Luo C M and Zhong L L 2013 J. Appl. Phys. 114 064109 doi: 10.1063/1.4818318}

    CrossRef Google Scholar

    [16]
    Shen Z Y, Huang X J, Yang H L, Xiang T Y, Wang C W, Yu Z T and Wu J 2018 J. Appl. Phys. 123 225106 doi: 10.1063/1.5024319}

    CrossRef Google Scholar

    [17]
    Xu Z C, Gao R M, Ding C F, Zhang Y T and Yao J Q 2014 Chin. Phys. Lett. 31 054205 doi: 10.1088/0256-307X/31/5/054205}

    CrossRef Google Scholar

    [18]
    Li S X, Nugraha P S, Su X Q, Chen X Y, Yang Q L, Unferdorben M, Kovács F, Kunsági-Máté S, Liu M, Zhang X Q, Ouyang C M, Li Y F, Fülöp J A, Han J G and Zhang W L 2019 Opt. Express 27 2317 doi: 10.1364/OE.27.002317}

    CrossRef Google Scholar

    [19]
    Li Y J, Wang C W, Shen Z Y, Wu D, Wu N and Yang H L 2019 Phys. Scr. 94 035703

    Google Scholar

    [20]
    Li Y J, Huang X J, Huang S Q, Zhou Y F, Wu J, Wang C W, Shen Z Y and Yang H L 2019 Mater. Res. Express 6 085806 doi: 10.1088/2053-1591/ab196b}

    CrossRef Google Scholar

    [21]
    Lee S H, Choi M, Kim T T, Lee S, Liu M, Yin X, Choi H K, Lee S S, Choi C G, Choi S Y, Zhang X and Min B 2012 Nat. Mater. 11 936 doi: 10.1038/nmat3433}

    CrossRef Google Scholar

    [22]
    Yan R, Sensale-Rodriguez B, Liu L, Jena D and Xing H G 2012 Opt. Express 20 28664 doi: 10.1364/OE.20.028664}

    CrossRef Google Scholar

    [23]
    Mousavi S H, Kholmanov I, Alici K B, Purtseladze D, Arju N, Tatar K, Fozdar D Y, Suk J W, Hao Y, Khanikaev A B, Ruoff R S and Shvets G 2013 Nano Lett. 13 1111 doi: 10.1021/nl304476b}

    CrossRef Google Scholar

    [24]
    Yao Y, Kats M A, Genevet P, Yu N, Song Y, Kong J and Capasso F 2013 Nano Lett. 13 1257 doi: 10.1021/nl3047943}

    CrossRef Google Scholar

    [25]
    Driscoll T, Kim H T, Chae B G, Kim B G, Lee Y W, Jokerst N M, Palit S, Smith D R, Ventra M D and Basov D N 2009 Science 325 1518 doi: 10.1126/science.1176580}

    CrossRef Google Scholar

    [26]
    Zhang Z, Tian Z, Chang C, Wang X G, Zhang X Q, Quyang C M, Gu J Q and Zhang W L 2018 Nanotechnology and Precision Engineering 1 123

    Google Scholar

    [27]
    Wen Q Y, Zhang H W, Yang Q H, Xie Y S, Chen K and Liu Y L 2010 Appl. Phys. Lett. 97 021111 doi: 10.1063/1.3463466}

    CrossRef Google Scholar

    [28]
    Wen Q Y, Zhang H W, Yang Q H, Chen Z, Long Y, Jing Y L, Lin Y and Zhang P X 2012 J. Phys. D 45 235106 doi: 10.1088/0022-3727/45/23/235106}

    CrossRef Google Scholar

    [29]
    Shen N H, Kafesaki M, Koschny T, Zhang L, Economou E N and Soukoulis C M 2009 Phys. Rev. B 79 161102 doi: 10.1103/PhysRevB.79.161102}

    CrossRef Google Scholar

    [30]
    Liu S, Zhang L, Yang Q L, Xu Q, Yang Y, Noor A, Zhang Q, Iqbal S, Wang X, Tian Z, Tang W X, Cheng Q, Han J G, Zhang W L and Cui T J 2016 Adv. Opt. Mater. 4 1965 doi: 10.1002/adom.201600471}

    CrossRef Google Scholar

    [31]
    Yan X, Liang L J, Zhang Z, Yang M S, Wei D Q, Wang M, Li Y P, Lv Y Y, Zhang X F, Ding X and Yao J Q 2018 Acta Phys. Sin. 67 118102

    Google Scholar

    [32]
    Xu Z C, Gao R M, Ding C F, Wu L, Zhang Y T and Yao J Q 2015 Opt. Mater. 42 148 doi: 10.1016/j.optmat.2015.01.001}

    CrossRef Google Scholar

    [33]
    Xu Z C, Gao R M, Ding C F, Wu L, Zhang Y T and Yao J Q 2015 Opt. Commun. 344 125 doi: 10.1016/j.optcom.2015.01.051}

    CrossRef Google Scholar

    [34]
    Hu T, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J and Averitt R D 2008 Phys. Rev. B 78 241103 doi: 10.1103/PhysRevB.78.241103}

    CrossRef Google Scholar

Catalog

    Article views (333) PDF downloads (326) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return