Photoexcited Blueshift and Redshift Switchable Metamaterial Absorber at Terahertz Frequencies
-
Abstract
We propose a design and numerical study of an optically blueshift and redshift switchable metamaterial (MM) absorber in the terahertz regime. The MM absorber comprises a periodic array of metallic split-ring resonators (SRRs) with semiconductor silicon embedded in the gaps of MM resonators. The absorptive frequencies of the MM can be shifted by applying an external pump power. The simulation results show that, for photoconductivity of silicon ranging between 1 S/m and 4000 S/m, the resonance peak of the absorption spectra shifts to higher frequencies, from 0.67 THz to 1.63 THz, with a resonance tuning range of 59%. As the conductivity of silicon increases, the resonance frequencies of the MM absorber are continuously tuned from 1.60 THz to 1.16 THz, a redshift tuning range of 28%. As the conductivity increases above 30000 S/m, the resonance frequencies tend to be stable while the absorption peak has a merely tiny variation. The optical-tuned absorber has potential applications as a terahertz modulator or switch. -
-
References
[1] Chen H T, Padilla W J, Zide J M O, Gossard A C, Taylor A J and Averitt R D 2006 Nature 444 597 doi: 10.1038/nature05343}[2] Chen H T, O'Hara J F, Azad A K, Taylor A J, Averitt R D, Shrekenhamer D B and Padilla W J 2008 Nat. Photon. 2 295 doi: 10.1038/nphoton.2008.52}[3] Tao H, Landy N I, Bingham C M, Zhang X, Averitt R D and Padilla W J 2008 Opt. Express 16 7181 doi: 10.1364/OE.16.007181}[4] Iwaszczuk K, Strikwerda A C, Fan K, Zhang X, Averitt R D and Jepsen P U 2012 Opt. Express 20 635 doi: 10.1364/OE.20.000635}[5] Ferguson B and Zhang X C 2002 Nat. Mater. 1 26 doi: 10.1038/nmat708}[6] Tonouchi M 2007 Nat. Photon. 1 97 doi: 10.1038/nphoton.2007.3}[7] O'Hara J F et al. 2008 Opt. Express 16 1786 doi: 10.1364/OE.16.001786}[8] Chiang Y J, Yang C S, Yang Y H, Pan C L and Yen T J 2011 Appl. Phys. Lett. 99 191909[9] Hao J, Wang J, Liu X, Padilla W J, Zhou L and Qiu M 2010 Appl. Phys. Lett. 96 251104 doi: 10.1063/1.3442904}[10] Ma Y, Chen Q, Grant J, Saha S C, Khalid A and Smith D R 2011 Opt. Lett. 36 945 doi: 10.1364/OL.36.000945}[11] Shrekenhamer D, Xu W, Venkatesh S, Schurig D, Sonkusale S and Padilla W J 2012 Phys. Rev. Lett. 109 177401 doi: 10.1103/PhysRevLett.109.177401}[12] Landy N I, Sajuyibge S, Mock J J, Smith D R and Padilla W J 2008 Phys. Rev. Lett. 100 207402 doi: 10.1103/PhysRevLett.100.207402}[13] Shen X P, Cui T J, Zhao J, Ma H F, Jiang W X and L I H 2011 Opt. Express 19 9401 doi: 10.1364/OE.19.009401}[14] Wen Q Y, Zhang H W, Xie Y S, Yang Q H and Liu Y L 2009 Appl. Phys. Lett. 95 241111 doi: 10.1063/1.3276072}[15] Xiong H, Hong J S, Luo C M and Zhong L L 2013 J. Appl. Phys. 114 064109 doi: 10.1063/1.4818318}[16] Shen Z Y, Huang X J, Yang H L, Xiang T Y, Wang C W, Yu Z T and Wu J 2018 J. Appl. Phys. 123 225106 doi: 10.1063/1.5024319}[17] Xu Z C, Gao R M, Ding C F, Zhang Y T and Yao J Q 2014 Chin. Phys. Lett. 31 054205 doi: 10.1088/0256-307X/31/5/054205}[18] Li S X, Nugraha P S, Su X Q, Chen X Y, Yang Q L, Unferdorben M, Kovács F, Kunsági-Máté S, Liu M, Zhang X Q, Ouyang C M, Li Y F, Fülöp J A, Han J G and Zhang W L 2019 Opt. Express 27 2317 doi: 10.1364/OE.27.002317}[19] Li Y J, Wang C W, Shen Z Y, Wu D, Wu N and Yang H L 2019 Phys. Scr. 94 035703[20] Li Y J, Huang X J, Huang S Q, Zhou Y F, Wu J, Wang C W, Shen Z Y and Yang H L 2019 Mater. Res. Express 6 085806 doi: 10.1088/2053-1591/ab196b}[21] Lee S H, Choi M, Kim T T, Lee S, Liu M, Yin X, Choi H K, Lee S S, Choi C G, Choi S Y, Zhang X and Min B 2012 Nat. Mater. 11 936 doi: 10.1038/nmat3433}[22] Yan R, Sensale-Rodriguez B, Liu L, Jena D and Xing H G 2012 Opt. Express 20 28664 doi: 10.1364/OE.20.028664}[23] Mousavi S H, Kholmanov I, Alici K B, Purtseladze D, Arju N, Tatar K, Fozdar D Y, Suk J W, Hao Y, Khanikaev A B, Ruoff R S and Shvets G 2013 Nano Lett. 13 1111 doi: 10.1021/nl304476b}[24] Yao Y, Kats M A, Genevet P, Yu N, Song Y, Kong J and Capasso F 2013 Nano Lett. 13 1257 doi: 10.1021/nl3047943}[25] Driscoll T, Kim H T, Chae B G, Kim B G, Lee Y W, Jokerst N M, Palit S, Smith D R, Ventra M D and Basov D N 2009 Science 325 1518 doi: 10.1126/science.1176580}[26] Zhang Z, Tian Z, Chang C, Wang X G, Zhang X Q, Quyang C M, Gu J Q and Zhang W L 2018 Nanotechnology and Precision Engineering 1 123[27] Wen Q Y, Zhang H W, Yang Q H, Xie Y S, Chen K and Liu Y L 2010 Appl. Phys. Lett. 97 021111 doi: 10.1063/1.3463466}[28] Wen Q Y, Zhang H W, Yang Q H, Chen Z, Long Y, Jing Y L, Lin Y and Zhang P X 2012 J. Phys. D 45 235106 doi: 10.1088/0022-3727/45/23/235106}[29] Shen N H, Kafesaki M, Koschny T, Zhang L, Economou E N and Soukoulis C M 2009 Phys. Rev. B 79 161102 doi: 10.1103/PhysRevB.79.161102}[30] Liu S, Zhang L, Yang Q L, Xu Q, Yang Y, Noor A, Zhang Q, Iqbal S, Wang X, Tian Z, Tang W X, Cheng Q, Han J G, Zhang W L and Cui T J 2016 Adv. Opt. Mater. 4 1965 doi: 10.1002/adom.201600471}[31] Yan X, Liang L J, Zhang Z, Yang M S, Wei D Q, Wang M, Li Y P, Lv Y Y, Zhang X F, Ding X and Yao J Q 2018 Acta Phys. Sin. 67 118102[32] Xu Z C, Gao R M, Ding C F, Wu L, Zhang Y T and Yao J Q 2015 Opt. Mater. 42 148 doi: 10.1016/j.optmat.2015.01.001}[33] Xu Z C, Gao R M, Ding C F, Wu L, Zhang Y T and Yao J Q 2015 Opt. Commun. 344 125 doi: 10.1016/j.optcom.2015.01.051}[34] Hu T, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J and Averitt R D 2008 Phys. Rev. B 78 241103 doi: 10.1103/PhysRevB.78.241103}