Transient Photoconductivity in LaRhO Thin Film

Funds: Supported by the National Key R&D Program of China under Grant Nos 2017YFA0303603 and 2016YFA0401803, the National Natural Science Foundation of China under Grant Nos 11574316, U1532155, 61805256 and U1832106, and the Key Research Program of Frontier Sciences of CAS under Grant No QYZDB-SSW-SLH011.
  • Received Date: July 22, 2019
  • Published Date: October 31, 2019
  • High-quality epitaxial LaRhO (LRO) thin films on SrTiO (110) single-crystalline substrates are fabricated by pulsed laser deposition and their photoconductivity properties are studied. The transient photoconductivity (TPC) effect is found in this semiconductor LRO film at room temperature. The magnitude of TPC increases almost linearly with the laser power intensities and the photon energies in visible light range. Moreover, the difference in the TPC results under two airflow conditions confirms that both intrinsic photoinduced carrier accumulation and extrinsic photoinduced heating effects contribute to the magnitude of TPC effect.
  • Article Text

  • [1]
    Vonhelmolt R, Wecker J, Holzapfel B, Schultz L and Samwer K 1993 Phys. Rev. Lett. 71 2331 doi: 10.1103/PhysRevLett.71.2331}

    CrossRef Google Scholar

    [2]
    Rastogi A, Kushwaha A K, Shiyani T, Gangawar A and Budhani R C 2010 Adv. Mater. 22 4448 doi: 10.1002/adma.201001980}

    CrossRef Google Scholar

    [3]
    Beyreuther E, Thiessen A, Grafström S, Eng L M, Dekker M C and Dörr K 2009 Phys. Rev. B 80 075106 doi: 10.1103/PhysRevB.80.075106}

    CrossRef Google Scholar

    [4]
    Dao L Y, Zhang Z T, Xiao Y T, Zhang M H, Wang S, He J, Jia J S, Yu L J, Sun B and Xiong C M 2019 Acta Phys. Sin. 68 067302 in Chinese doi: 10.7498/aps.68.20182204}

    CrossRef Google Scholar

    [5]
    Tsai S H, Basu S, Huang C Y, Hsu L C, Lin Y G and Horng R H 2018 Sci. Rep. 8 14056 doi: 10.1038/s41598-018-32412-3}

    CrossRef Google Scholar

    [6]
    Cauro R, Gilabert A, Contour J P, Lyonnet R, Medici M G, Grenet J C, Leighton C and Schuller I K 2001 Phys. Rev. B 63 174423 doi: 10.1103/PhysRevB.63.174423}

    CrossRef Google Scholar

    [7]
    Kiryukhin V, Casa D, Hill J P, Keimer B, Vigliante A, Tomioka Y and Tokura Y 1997 Nature 386 813 doi: 10.1038/386813a0}

    CrossRef Google Scholar

    [8]
    Yan G Y, Zhang H L, Bai Z L, Wang S F, Wang J L, Yu W and Fu G S 2013 Chin. Phys. Lett. 30 046801 doi: 10.1088/0256-307X/30/4/046801}

    CrossRef Google Scholar

    [9]
    Taniguchi T, Iizuka W, Nagata Y, Uchida T and Samata H 2003 J. Alloys Compd. 350 24 doi: 10.1016/S0925-83880200969-6}

    CrossRef Google Scholar

    [10]
    Terasaki I, Shibasaki S, Yoshida S and Kobayashi W 2010 Materials 3 786 doi: 10.3390/ma3020786}

    CrossRef Google Scholar

    [11]
    Shibasaki S, Takahashi Y and Terasaki I 2009 J. Electron. Mater. 38 1013 doi: 10.1007/s11664-009-0666-x}

    CrossRef Google Scholar

    [12]
    Gysling H J, Monnier J R and Apai G 1987 J. Catal. 103 407 doi: 10.1016/0021-95178790132-1}

    CrossRef Google Scholar

    [13]
    Wold A, Post B and Banks E 1957 J. Am. Chem. Soc. 79 6365 doi: 10.1021/ja01581a007}

    CrossRef Google Scholar

    [14]
    Nakamura M, Krockenberger Y, Fujioka J, Kawasaki M and Tokura Y 2015 Appl. Phys. Lett. 106 072103 doi: 10.1063/1.4909512}

    CrossRef Google Scholar

    [15]
    Pietsch U, Holy V and Baumbach T 2013 High-Resolution X-ray Scattering: from Thin Films to Lateral Nanostructures Berlin: Springer

    Google Scholar

    [16]
    Mary T A and Varadaraju U V 1994 J. Solid State Chem. 110 176 doi: 10.1006/jssc.1994.1153}

    CrossRef Google Scholar

    [17]
    Li Y J, Li S L, Gong P, Li Y L, Fang X Y, Jia Y H and Cao M S 2018 Physica E 104 247 doi: 10.1016/j.physe.2018.08.001}

    CrossRef Google Scholar

    [18]
    Mott N F and Davis E A 1979 Electronic Processes in Non-Crystalline Materials 2nd edn Oxford: Oxford University Press

    Google Scholar

    [19]
    Smolyaninova V N, Talanova E, Kennedy R, Kolagani R M, Overby M, Aldaco L, Yong G and Karki K 2007 Phys. Rev. B 76 104423 doi: 10.1103/PhysRevB.76.104423}

    CrossRef Google Scholar

    [20]
    Li L, Auer E, Liao M, Fang X, Zhai T, Gautam U K, Lugstein A, Koide Y, Bando Y and Golberg D 2011 Nanoscale 3 1120 doi: 10.1039/c0nr00702a}

    CrossRef Google Scholar

    [21]
    Deng Z, Meng G, Fang X, Dong W, Shao J, Wang S and Tong B 2019 J. Alloys Compd. 777 52 doi: 10.1016/j.jallcom.2018.09.182}

    CrossRef Google Scholar

    [22]
    Law M, Kind H, Messer B, Kim F and Yang P 3.0.CO;2-3}" target="_blank">2002 Angew. Chem. Int. Ed. 41 2405 doi: 10.1002/1521-37732002070341:13<2405::AID-ANIE2405>3.0.CO;2-3}

    CrossRef 2002 Angew. Chem. Int. Ed. 41 2405" target="_blank">Google Scholar

    [23]
    Chai X, Xing H and Jin K 2016 Sci. Rep. 6 23280 doi: 10.1038/srep23280}

    CrossRef Google Scholar

    [24]
    Takubo N, Ogimoto Y, Nakamura M, Tamaru H, Izumi M and Miyano K 2005 Phys. Rev. Lett. 95 017404 doi: 10.1103/PhysRevLett.95.017404}

    CrossRef Google Scholar

  • Cited by

    Periodical cited type(16)

    1. Bao, W., Xu, D.-X. Asymptotic analysis of resonance behaviors for the (2+1)-dimensional generalized fifth-order KdV equation via Hirota's bi-linear method. Physica Scripta, 2025, 100(1): 015224. DOI:10.1088/1402-4896/ad95f2
    2. Li, W., Chen, Y., Zhang, Z. et al. Solitons in the Fifth-Order KdV Equation with a Perturbation. Chinese Physics Letters, 2025, 42(1): 010202. DOI:10.1088/0256-307X/42/1/010202
    3. Li, Y., Yao, R., Lou, S. Novel nonlinear wave transitions and interactions for (2+1)-dimensional generalized fifth-order KdV equation. Communications in Theoretical Physics, 2024, 76(12): 125003. DOI:10.1088/1572-9494/ad70a2
    4. Zhao, Z., He, L. Space-curved resonant solitons and inelastic interaction solutions of a (2+1)-dimensional generalized KdV equation. Nonlinear Dynamics, 2024, 112(5): 3823-3833. DOI:10.1007/s11071-023-09223-x
    5. Chen, G.-H., Wang, H.-C., Deng, H.-M. et al. Vortex Quantum Droplets under Competing Nonlinearities. Chinese Physics Letters, 2024, 41(2): 020501. DOI:10.1088/0256-307X/41/2/020501
    6. Zhu, D., Zhu, X. Multi-Pseudo Peakons in the b-Family Fifth-Order Camassa-Holm Model. Chinese Physics Letters, 2023, 40(12): 120202. DOI:10.1088/0256-307X/40/12/120202
    7. Zhao, Z., Zhang, C., Feng, Y. et al. Space-curved resonant solitons and interaction solutions of the (2+1)-dimensional Ito equation. Applied Mathematics Letters, 2023. DOI:10.1016/j.aml.2023.108799
    8. Ding, C., Zhou, Q., Xu, S. et al. Nonautonomous Breather and Rogue Wave in Spinor Bose-Einstein Condensates with Space-Time Modulated Potentials. Chinese Physics Letters, 2023, 40(4): 040501. DOI:10.1088/0256-307X/40/4/040501
    9. Ma, H., Gao, Y., Deng, A. Nonlinear superposition of the (2+1)-dimensional generalized Konopelchenko–Dubrovsky–Kaup–Kupershmidt equation. Nonlinear Dynamics, 2023, 111(1): 619-632. DOI:10.1007/s11071-022-07827-3
    10. Zhao, Z., He, L. Multiple lump molecules and interaction solutions of the Kadomtsev-Petviashvili I equation. Communications in Theoretical Physics, 2022, 74(10): 105004. DOI:10.1088/1572-9494/ac839c
    11. Mao, J.-J., Tian, S.-F., Xu, T.-Z. et al. Inverse scattering transforms of the inhomogeneous fifth-order nonlinear Schrödinger equation with zero/nonzero boundary conditions. Communications in Theoretical Physics, 2022, 74(8): 085007. DOI:10.1088/1572-9494/ac679b
    12. Ma, H., Gao, Y., Deng, A. Fission and fusion solutions of the (2+1)-dimensional generalized Konopelchenko–Dubrovsky–Kaup–Kupershmidt equation: case of fluid mechanics and plasma physics. Nonlinear Dynamics, 2022, 108(4): 4123-4137. DOI:10.1007/s11071-022-07429-z
    13. Shi, K.-Z., Ren, B. Dynamics of mixed lump-soliton solutions to the (3+1)-dimensional Boiti–Leon–Manna–Pempinelli like equation. Partial Differential Equations in Applied Mathematics, 2022. DOI:10.1016/j.padiff.2022.100276
    14. Wei, P.-F., Long, C.-X., Zhu, C. et al. Soliton molecules, multi-breathers and hybrid solutions in (2+1)-dimensional Korteweg-de Vries-Sawada-Kotera-Ramani equation. Chaos, Solitons and Fractals, 2022. DOI:10.1016/j.chaos.2022.112062
    15. Zhou, Q., Zhong, Y., Triki, H. et al. Chirped Bright and Kink Solitons in Nonlinear Optical Fibers with Weak Nonlocality and Cubic-Quantic-Septic Nonlinearity. Chinese Physics Letters, 2022, 39(4): 044202. DOI:10.1088/0256-307X/39/4/044202
    16. Shi, K.-Z., Shen, S.-F., Ren, B. et al. Dynamics of mixed lump-soliton for an extended (2+1)-dimensional asymmetric Nizhnik-Novikov-Veselov equation. Communications in Theoretical Physics, 2022, 74(3): 035001. DOI:10.1088/1572-9494/ac53a1

    Other cited types(0)

Catalog

    Article views (462) PDF downloads (355) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return