[1] | Guazzoni C 2010 Nucl. Instrum. Methods Phys. Res. Sect. A 624 247 | The first 25 years of silicon drift detectors: A personal view
[2] | Kasap S, Frey J B, Belev G, Tousignant O, Mani H, Laperriere L, Reznik A and Rowlands J A 2009 Phys. Status Solidi B 246 1794 | Amorphous selenium and its alloys from early xeroradiography to high resolution X-ray image detectors and ultrasensitive imaging tubes
[3] | Sordo S D, Abbene L, Caroli E, Mancini A M, Zappettini A and Ubertini P 2009 Sensors 9 3491 | Room-temperature compound semiconductor radiation detectors
[4] | Sun H, Zhu X H, Yang D Y, Wangyang P H, Tian H B and Gao X Y 2016 IEEE Trans. Nucl. Sci. 63 1790 | Electrical Behavior of X-Ray Detector Based on PbI 2 Crystal With Coplanar Electrode Structure
[5] | Kim Y C, Kim K H, Son D Y, Jeong D N, Seo J Y, Choi Y S, Han I T, Lee S Y and Park N G 2017 Nature 550 87 | Printable organometallic perovskite enables large-area, low-dose X-ray imaging
[6] | Boroum, F A, Zhu M, Dalton A B, Keddie J L, Sellin P J and Gutierrez J J 2007 Appl. Phys. Lett. 91 033509 | Direct x-ray detection with conjugated polymer devices
[7] | Duboz J Y, Frayssinet E, Chenot S, Reverchon J L and Idir M 2010 Appl. Phys. Lett. 97 163504 | X-ray detectors based on GaN Schottky diodes
[8] | Nava F, Bertuccio G, Cavallini A and Vittone E 2008 E Meas. Sci. Technol. 19 102001 | Silicon carbide and its use as a radiation detector material
[9] | Conte G, Rossi M C, Salvatori S, Ascarelli P and Trucchi D 2004 J. Appl. Phys. 96 6415 | Thin polycrystalline diamond for low-energy x-ray detection
[10] | Lu X, Zhou L D, Chen L, Ouyang X P, Liu B, Xu J and Tang H L 2018 Appl. Phys. Lett. 112 103502 | Schottky x-ray detectors based on a bulk β-Ga 2 O 3 substrate
[11] | Liang H L, Cui S J, Su R, Guan P F, He Y H, Yang L H, Chen L M, Zhang Y H, Mei Z X and Du X L 2019 ACS Photon. 6 351 | Flexible X-ray Detectors Based on Amorphous Ga 2 O 3 Thin Films
[12] | Zhao X L, Chen L, He Y N, Liu J L, Peng W B, Huang Z Y, Qi X M, Pan Z J, Zhang W T, Zhang Z B and Ouyang X P 2016 Appl. Phys. Lett. 108 171103 | Nanosecond X-ray detector based on high resistivity ZnO single crystal semiconductor
[13] | Endo H, Chiba T, Meguro K, Takahashi K, Fujisawa M, Sugimura S, Narita S, Kashiwaba Y and Sato E 2011 Nucl. Instrum. Methods Phys. Res. Sect. A 665 15 | Fabrication and characterization of a ZnO X-ray sensor using a high-resistivity ZnO single crystal grown by the hydrothermal method
[14] | Zhou L D, Huang Z Y, Zhao X L, He Y N, Chen L, Xu M X, Zhao K, Zhang S C and Ouyang X P 2019 IEEE Photon. Technol. Lett. 31 365 | A High-Resistivity ZnO Film-Based Photoconductive X-Ray Detector
[15] | Zhao X L, Kang X, Chen L, Zhang Z B, Liu J L, Ouyang X P, Peng W B, He Y N 2014 Acta Phys. Sin. 63 098502 (in Chinese) | Study of ZnO photoconductive X-ray detector
[16] | Liu L S, Mei Z X, Tang A H, Azarov A, Kuznetsov A, Xue Q K and Du X L 2016 Phys. Rev. B 93 235305 | Oxygen vacancies: The origin of -type conductivity in ZnO
[17] | Tang A H, Mei Z X, Huo W X and Du X L 2018 Sci. Chin.-Phys. Mech. Astron. 61 117321 | Self-diffusion measurements in In2O3 isotopic heterostructures: Oxygen vacancy energetics
[18] | Monakhov E V, Kuznetsov A Y and Svensson B G 2009 J. Phys. D 42 153001 | Zinc oxide: bulk growth, role of hydrogen and Schottky diodes
[19] | Zhang Y F, Chen X H, Xu Y, Ren F F, Gu S L, Zhang R, Zheng Y D and Ye J D 2019 Chin. Phys. B 28 028501 | Transition of photoconductive and photovoltaic operation modes in amorphous Ga 2 O 3 -based solar-blind detectors tuned by oxygen vacancies
[20] | Lany S and Zunger A 2005 Phys. Rev. B 72 035215 | Anion vacancies as a source of persistent photoconductivity in II-VI and chalcopyrite semiconductors
[21] | Hu W J, Paudel T R, Lopatin S, Wang Z, Ma H, Wu K, Bera A, Yuan G, Gruverman A, Tsymbal E Y and Wu T 2018 Adv. Funct. Mater. 28 1704337 | Colossal X-Ray-Induced Persistent Photoconductivity in Current-Perpendicular-to-Plane Ferroelectric/Semiconductor Junctions