Quantifying Process Nonclassicality in Bosonic Fields

Funds: Supported by the Young Scientists Fund of the National Natural Science Foundation of China under Grant No 11605006, the National Natural Science Foundation of China under Grant No 11875317, the National Center for Mathematics and Interdisciplinary Sciences of Chinese Academy of Sciences under Grant No Y029152K51, and the Key Laboratory of Random Complex Structures and Data Science of Chinese Academy of Sciences under Grant No 2008DP173182.
  • Received Date: July 03, 2019
  • Published Date: September 30, 2019
  • Nonclassicality of optical states, as a key characteristic of bosonic fields, is a valuable resource for quantum information processing. We investigate the generation of nonclassicality in quantum processes from a quantitative perspective, introduce three information-theoretic measures of nonclassicality for quantum-optical processes based on the Wigner–Yanase skew information and coherent states, and illustrate their physical significance through several well-known single-mode quantum processes.
  • Article Text

  • [1]
    Walls D F and Milburn G J 1994 Quantum Optics Berlin: Springer-Verlag

    Google Scholar

    [2]
    Mandel L and Wolf E 1995 Optical Coherence and Quantum Optics Cambridge: Cambridge University Press

    Google Scholar

    [3]
    Scully M O and Zubairy M S 1997 Quantum Optics Cambridge: Cambridge University Press

    Google Scholar

    [4]
    Dodonov V V 2002 J. Opt. B 4 R1 doi: 10.1088/1464-4266/4/1/201}

    CrossRef Google Scholar

    [5]
    Dodonov V V and Man'ko V I 2003 Theory of Nonclassical States of Light London: Taylor & Francis

    Google Scholar

    [6]
    Haroche S and Raimond J M 2006 Exploring the Quantum Oxford: Oxford University Press

    Google Scholar

    [7]
    Vogel W and Welsch D G 2006 Quantum Optics Weinheim: Wiley-VCH

    Google Scholar

    [8]
    Li S B, Zou X B and Guo G C 2007 Phys. Rev. A 75 045801 doi: 10.1103/PhysRevA.75.045801}

    CrossRef Google Scholar

    [9]
    Glauber R J 1963 Phys. Rev. 131 2766 doi: 10.1103/PhysRev.131.2766}

    CrossRef Google Scholar

    [10]
    Sudarshan E C G 1963 Phys. Rev. Lett. 10 277 doi: 10.1103/PhysRevLett.10.277}

    CrossRef Google Scholar

    [11]
    Titulaer U M and Glauber R J 1965 Phys. Rev. 140 B676 doi: 10.1103/PhysRev.140.B676}

    CrossRef Google Scholar

    [12]
    Gerry C C and Knight P L 2005 Introductory Quantum Optics Cambridge: Cambridge University Press

    Google Scholar

    [13]
    Kim M S, Son W, Bužek V and Knight P L 2002 Phys. Rev. A 65 032323 doi: 10.1103/PhysRevA.65.032323}

    CrossRef Google Scholar

    [14]
    Wang X B 2002 Phys. Rev. A 66 024303 doi: 10.1103/PhysRevA.66.024303}

    CrossRef Google Scholar

    [15]
    Wang X B 2002 arXiv:0206127v2

    Google Scholar

    [16]
    Smith G, Smolin J A and Yard J 2011 Nat. Photon. 5 624 doi: 10.1038/nphoton.2011.203}

    CrossRef Google Scholar

    [17]
    Lercher D, Giedke G and Wolf M M 2013 New J. Phys. 15 123003 doi: 10.1088/1367-2630/15/12/123003}

    CrossRef Google Scholar

    [18]
    Hillery M 1987 Phys. Rev. A 35 725 doi: 10.1103/PhysRevA.35.725}

    CrossRef Google Scholar

    [19]
    Dodonov V V, Man'ko O V, Man'ko V I and Wünsche A 2000 J. Mod. Opt. 47 633 doi: 10.1080/09500340008233385}

    CrossRef Google Scholar

    [20]
    Wünsche A, Dodonov V V, Man'ko O V and Man'ko V I 3.0.CO;2-4}" target="_blank">2001 Fortschr. Phys. 49 1117 doi: 10.1002/1521-397820011049:10/11<1117::AID-PROP1117>3.0.CO;2-4}

    CrossRef 2001 Fortschr. Phys. 49 1117" target="_blank">Google Scholar

    [21]
    Marian P, Marian T A and Scutaru H 2002 Phys. Rev. Lett. 88 153601 doi: 10.1103/PhysRevLett.88.153601}

    CrossRef Google Scholar

    [22]
    Marian P, Marian T A and Scutaru H 2004 Phys. Rev. A 69 022104 doi: 10.1103/PhysRevA.69.022104}

    CrossRef Google Scholar

    [23]
    Asbóth J K, Calsamiglia J and Ritsch H 2005 Phys. Rev. Lett. 94 173602 doi: 10.1103/PhysRevLett.94.173602}

    CrossRef Google Scholar

    [24]
    Sun J W, Ding L E, Yang Q Y and Wei L F 2005 Acta Phys. Sin. 54 2704 in Chinese doi: 10.7498/aps.54.2704}

    CrossRef Google Scholar

    [25]
    Ma A Q, Wang Q, Liu S T, Zeng R and Ma Z 2005 Acta Phys. Sin. 54 2049 in Chinese doi: 10.7498/aps.54.2049}

    CrossRef Google Scholar

    [26]
    Hu L Y, Xu X X and Yuan H C 2010 Acta Phys. Sin. 59 4661 in Chinese doi: 10.7498/aps.59.4661}

    CrossRef Google Scholar

    [27]
    Li J, Li G, Wang J M, Zhu S Y and Zhang T C 2010 J. Phys. B: At. Mol. Opt. Phys. 43 085504 doi: 10.1088/0953-4075/43/8/085504}

    CrossRef Google Scholar

    [28]
    Tavassoly M K and Jalali H R 2013 Chin. Phys. B 22 084202 doi: 10.1088/1674-1056/22/8/084202}

    CrossRef Google Scholar

    [29]
    Xu L J, Tan G B, Ma S J and Guo Q 2013 Chin. Phys. B 22 030311 doi: 10.1088/1674-1056/22/3/030311}

    CrossRef Google Scholar

    [30]
    Xu X X, Yuan H C and Wang Y 2014 Chin. Phys. B 23 070301 doi: 10.1088/1674-1056/23/7/070301}

    CrossRef Google Scholar

    [31]
    Wang Z, Li H M and Yuan H C 2014 J. Opt. Soc. Am. B 31 2163 doi: 10.1364/JOSAB.31.002163}

    CrossRef Google Scholar

    [32]
    Li H M, Xu X X, Wang Z, Wan Z L and Jun X Y 2018 Int. J. Theor. Phys. 57 2892 doi: 10.1007/s10773-018-3808-1}

    CrossRef Google Scholar

    [33]
    Luo S L and Zhang Y 2019 Phys. Rev. A accepted

    Google Scholar

    [34]
    Nielsen M A and Chuang I L 2010 Quantum Computation and Quantum Information Cambridge: Cambridge University Press

    Google Scholar

    [35]
    Kwiat P G, Barraza-Lopez S, Stefanov A and Gisin N 2001 Nature 409 1014 doi: 10.1038/35059017}

    CrossRef Google Scholar

    [36]
    Furusawa A, Sørensen J L, Braunstein S L, Fuchs C A, Kimble H J and Polzik E S 1998 Science 282 706 doi: 10.1126/science.282.5389.706}

    CrossRef Google Scholar

    [37]
    Rahimi-Keshari S, Kiesel T, Vogel W, Grandi S, Zavatta A and Bellini M 2013 Phys. Rev. Lett. 110 160401 doi: 10.1103/PhysRevLett.110.160401}

    CrossRef Google Scholar

    [38]
    Sabapathy K K 2016 Phys. Rev. A 93 042103 doi: 10.1103/PhysRevA.93.042103}

    CrossRef Google Scholar

    [39]
    Ryl S, Sperling J and Vogel W 2017 Phys. Rev. A 95 053825 doi: 10.1103/PhysRevA.95.053825}

    CrossRef Google Scholar

    [40]
    Chen H B, Lo P Y, Gneiting C, Bae J, Chen Y N and Nori F 2018 arXiv:1811.09053v2

    Google Scholar

    [41]
    Sabapathy K K 2015 Phys. Rev. A 92 052301 doi: 10.1103/PhysRevA.92.052301}

    CrossRef Google Scholar

    [42]
    Wigner E P and Yanase M M 1963 Proc. Natl. Acad. Sci. USA 49 910 doi: 10.1073/pnas.49.6.910}

    CrossRef Google Scholar

    [43]
    Luo S L 2017 Phys. Rev. A 96 052126 doi: 10.1103/PhysRevA.96.052126}

    CrossRef Google Scholar

    [44]
    Luo S L and Sun Y 2017 Phys. Rev. A 96 022130 doi: 10.1103/PhysRevA.96.022130}

    CrossRef Google Scholar

    [45]
    Luo S L and Sun Y 2018 Phys. Rev. A 98 012113 doi: 10.1103/PhysRevA.98.012113}

    CrossRef Google Scholar

    [46]
    Kim M S, Park E, Knight P L and Jeong H 2005 Phys. Rev. A 71 043805 doi: 10.1103/PhysRevA.71.043805}

    CrossRef Google Scholar

    [47]
    Agarwal G S and Tara K 1991 Phys. Rev. A 43 492 doi: 10.1103/PhysRevA.43.492}

    CrossRef Google Scholar

    [48]
    Usha Devi A R, Prabhu R and Uma M S 2006 Eur. Phys. J. D 40 133 doi: 10.1140/epjd/e2006-00135-x}

    CrossRef Google Scholar

    [49]
    Yurke B and Stoler D 1986 Phys. Rev. Lett. 57 13 doi: 10.1103/PhysRevLett.57.13}

    CrossRef Google Scholar

    [50]
    Vourdas A 1986 Phys. Rev. A 34 3466 doi: 10.1103/PhysRevA.34.3466}

    CrossRef Google Scholar

    [51]
    Hall M J W 1994 Phys. Rev. A 50 3295 doi: 10.1103/PhysRevA.50.3295}

    CrossRef Google Scholar

    [52]
    Musslimani Z H, Braunstein S L, Mann A and Revzen M 1995 Phys. Rev. A 51 4967 doi: 10.1103/PhysRevA.51.4967}

    CrossRef Google Scholar

  • Related Articles

    [1]LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy [J]. Chin. Phys. Lett., 2012, 29(3): 030502. doi: 10.1088/0256-307X/29/3/030502
    [2]HUANG Bei-Bing, WAN Shao-Long. A Finite Temperature Phase Diagram in Rotating Bosonic Optical Lattices [J]. Chin. Phys. Lett., 2011, 28(6): 060303. doi: 10.1088/0256-307X/28/6/060303
    [3]LI Ben, CHEN Jing-Biao. Quantum Phase Transition of the Bosonic Atoms near the Feshbach Resonance in an Optical Lattice [J]. Chin. Phys. Lett., 2010, 27(12): 123701. doi: 10.1088/0256-307X/27/12/123701
    [4]TIAN Jing, QIU Hai-Bo, CHEN Yong. Nonlocal Measure Synchronization in Coupled Bosonic Josephson Junctions [J]. Chin. Phys. Lett., 2010, 27(7): 070501. doi: 10.1088/0256-307X/27/7/070501
    [5]SHI Chang-Guang, HIRAYAMA Minoru. Exact Bosonic Solutions of the Truncated Skyrme Model [J]. Chin. Phys. Lett., 2010, 27(6): 061101. doi: 10.1088/0256-307X/27/6/061101
    [6]LI Wei-Bin, ZHAN Zhi-Ming, XIE Xiao-Tao, LUO Jin-Ming, WU Xuan. Analytical Results of Eigenstates and Eigenenergies by Mixing Models of Five Bosonic Modes [J]. Chin. Phys. Lett., 2004, 21(6): 1003-1005.
    [7]ZHAN Zhi-Ming, LI Wei-Bin, LI Jia-Hua, YANG Wen-Xing, CHEN Ai-Xi. Exact Eigenstates for a Class of Models Describing Multiphoton Processes in the Presence of Six Bosonic Modes [J]. Chin. Phys. Lett., 2004, 21(6): 983-986.
    [8]LIU Jian-Ye, XING Yong-Zhong, GUO Wen-Jun, ZUO Wei, LI Xi-Guo. Isospin Effects of the Mean Field and Two-Body Collision on the Fragmentation Process [J]. Chin. Phys. Lett., 2002, 19(8): 1078-1081.
    [9]TAO Bi-xiu. Bosonic Membranes and the Cosmic Matter-Structure Formation [J]. Chin. Phys. Lett., 1999, 16(9): 701-702.
    [10]HU Hongliang. CONFORMAL INVARIANT ACTION FOR BOSONIC MEMBRANES AND GAUGE FIXING [J]. Chin. Phys. Lett., 1989, 6(2): 49-52.

Catalog

    Article views (366) PDF downloads (498) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return