[1] | Mao H K and Hemley R J 1994 Rev. Mod. Phys. 66 671 | Ultrahigh-pressure transitions in solid hydrogen
[2] | McMahon J M, Morales M A, Pierleoni C and Ceperley D M 2012 Rev. Mod. Phys. 84 1607 | The properties of hydrogen and helium under extreme conditions
[3] | Babaev E, Sudbø A and Ashcroft N W 2004 Nature 431 666 | A superconductor to superfluid phase transition in liquid metallic hydrogen
[4] | Eremets M I and Troyan I A 2011 Nat. Mater. 10 927 | Conductive dense hydrogen
[5] | Nettelmann N, Becker A, Holst B and Redmer R 2012 Astrophys. J. 750 52 | JUPITER MODELS WITH IMPROVED AB INITIO HYDROGEN EQUATION OF STATE (H-REOS.2)
[6] | Militzer B, Soubiran F, Wahl S M and Hubbard W 2016 J. Geophys. Res.: Planets 121 1552 | Constraints on the composition of the Earth's core from ab-initio calculations
[7] | Wigner E and Huntington H B 1935 J. Chem. Phys. 3 764 | On the Possibility of a Metallic Modification of Hydrogen
[8] | Howie R T, Guillaume C L, Scheler T, Goncharov A F and Gregoryanz E 2012 Phys. Rev. Lett. 108 125501 | Mixed Molecular and Atomic Phase of Dense Hydrogen
[9] | Dias R P, Noked O and Silvera I F 2016 Phys. Rev. Lett. 116 145501 | New Phases and Dissociation-Recombination of Hydrogen Deuteride to 3.4 Mbar
[10] | Zha C S, Liu H, Tse J S and Hemley R J 2017 Phys. Rev. Lett. 119 075302 | Melting and High Transitions of Hydrogen up to 300 GPa
[11] | Loubeyre P, Occelli F and LeToullec R 2002 Nature 416 613 | Optical studies of solid hydrogen to 320 GPa and evidence for black hydrogen
[12] | Dias R P and Silvera I F 2017 Science 355 715 | Structure of metallic hydrogen at zero pressure
[13] | Weir S T, Mitchell A C and Nellis W J 1996 Phys. Rev. Lett. 76 1860 | Metallization of Fluid Molecular Hydrogen at 140 GPa (1.4 Mbar)
[14] | Nellis W J 2006 Rep. Prog. Phys. 69 1479 | Dynamic compression of materials: metallization of fluid hydrogen at high pressures
[15] | Fortov V E, IIkaev R I, Arinin V A, Burtzev V V, Golubev V A, Iosilevskiy I L, Khrustalev V V, Mikhailov A L, Mochalov M A, Ya V and Zhernokletov M V 2007 Phys. Rev. Lett. 99 185001 | Phase Transition in a Strongly Nonideal Deuterium Plasma Generated by Quasi-Isentropical Compression at Megabar Pressures
[16] | Knudson M D, Desjarlais M P, Becker A, Lemke R W, Cochrane K R, Savage M E, Bliss D E, Mattsson T R and Redmer R 2015 Science 348 1455 | Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium
[17] | Ohta K, Ichimaru K, Einaga M, Kawaguchi S, Shimizu K, Matsuoka T, Hirao N and Ohishi Y 2015 Sci. Rep. 5 16560 | Phase boundary of hot dense fluid hydrogen
[18] | Zaghoo M, Salamat A and Silvera I F 2016 Phys. Rev. B 93 155128 | Evidence of a first-order phase transition to metallic hydrogen
[19] | Zaghoo M, Husb, R J and Silvera I F 2018 Phys. Rev. B 98 104102 | Striking isotope effect on the metallization phase lines of liquid hydrogen and deuterium
[20] | Knudson M D and Desjarlais M P 2017 Phys. Rev. Lett. 118 035501 | High-Precision Shock Wave Measurements of Deuterium: Evaluation of Exchange-Correlation Functionals at the Molecular-to-Atomic Transition
[21] | Celliers P M, Millot M, Brygoo S et al 2018 Science 361 677 | Properties of metallic hydrogen under pressure
[22] | Scandolo S 2003 Proc. Natl. Acad. Sci. USA 100 3051 | Liquid-liquid phase transition in compressed hydrogen from first-principles simulations
[23] | Holst B, Redmer R and Desjarlais M P 2008 Phys. Rev. B 77 184201 | Thermophysical properties of warm dense hydrogen using quantum molecular dynamics simulations
[24] | Delaney K T, Pierleoni C and Ceperley D M 2006 Phys. Rev. Lett. 97 235702 | Quantum Monte Carlo Simulation of the High-Pressure Molecular-Atomic Crossover in Fluid Hydrogen
[25] | Tamblyn I and Bonev S A 2010 Phys. Rev. Lett. 104 065702 | Structure and Phase Boundaries of Compressed Liquid Hydrogen
[26] | Lorenzen W, Holst B and Redmer R 2010 Phys. Rev. B 82 195107 | First-order liquid-liquid phase transition in dense hydrogen
[27] | Morales M A, Pierleoni C, Schwegler E and Ceperley D M 2010 Proc. Natl. Acad. Sci. USA 107 12799 | Evidence for a first-order liquid-liquid transition in high-pressure hydrogen from ab initio simulations
[28] | Morales M A, McMahon J M, Pierleoni C and Ceperley D M 2013 Phys. Rev. Lett. 110 065702 | Nuclear Quantum Effects and Nonlocal Exchange-Correlation Functionals Applied to Liquid Hydrogen at High Pressure
[29] | McMinis J, Clay I I I R C, Lee D and Morales M A 2015 Phys. Rev. Lett. 114 105305 | Molecular to Atomic Phase Transition in Hydrogen under High Pressure
[30] | Mazzola G, Yunoki S and Sorella S 2014 Nat. Commun. 5 3487 | Unexpectedly high pressure for molecular dissociation in liquid hydrogen by electronic simulation
[31] | Mazzola G, Helled R and Sorella S 2018 Phys. Rev. Lett. 120 025701 | Phase Diagram of Hydrogen and a Hydrogen-Helium Mixture at Planetary Conditions by Quantum Monte Carlo Simulations
[32] | Pierleoni C, Morales M A, Rillo G, Holzmann M and Ceperley D M 2016 Proc. Natl. Acad. Sci. USA 113 4953 | The solid molecular hydrogens in the condensed phase: Fundamentals and static properties
[33] | Pierleoni C, Holzmann M and Ceperley D M 2018 Contrib. Plasma Phys. 58 99 | Local structure in dense hydrogen at the liquid-liquid phase transition by coupled electron-ion Monte Carlo
[34] | Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 | Generalized Gradient Approximation Made Simple
[35] | Chen J, Li X Z, Zhang Q, Probert M I J, Pickard C J, Needs R J, Michaelides A and Wang E 2013 Nat. Commun. 4 2064 | Quantum simulation of low-temperature metallic liquid hydrogen
[36] | Kang D, Sun H, Dai J, Chen W, Zhao Z, Hou Y, Zeng J and Yuan J 2014 Sci. Rep. 4 5484 | Nuclear quantum dynamics in dense hydrogen
[37] | Kang D and Dai J 2018 J. Phys.: Condens. Matter 30 073002 | Dynamic electron–ion collisions and nuclear quantum effects in quantum simulation of warm dense matter
[38] | Städele M and Martin R M 2000 Phys. Rev. Lett. 84 6070 | Metallization of Molecular Hydrogen: Predictions from Exact-Exchange Calculations
[39] | Dion M, Rydberg H, Schröder E, Langreth D C and Lundqvist B I 2004 Phys. Rev. Lett. 92 246401 | Van der Waals Density Functional for General Geometries
[40] | Lee K, Murray È D, Kong L, Lundqvist B I and Langreth D C 2010 Phys. Rev. B 82 081101 | Higher-accuracy van der Waals density functional
[41] | Li Z G, Chen Q F, Gu Y J, Zheng J, Zhang W, Liu L, Li G J, Wang Z Q and Dai J Y 2018 Phys. Rev. B 98 064101 | Multishock compression of dense cryogenic hydrogen-helium mixtures up to 60 GPa: Validating the equation of state calculated from first principles
[42] | Vydrov O A and van Voorhis T 2010 J. Chem. Phys. 133 244103 | Nonlocal van der Waals density functional: The simpler the better
[43] | Sabatini R, Gorni T and de Gironcoli S 2013 Phys. Rev. B 87 041108 | Nonlocal van der Waals density functional made simple and efficient
[44] | Foulkes W, Mitas L, Needs R and Rajagopal G 2001 Rev. Mod. Phys. 73 33 | Quantum Monte Carlo simulations of solids
[45] | Saumon D and Chabrier G 1992 Phys. Rev. A 46 2084 | Fluid hydrogen at high density: Pressure ionization
[46] | Holst B, Nettelmann N and Redmer R 2007 Contrib. Plasma Phys. 47 368 | Equation of State for Dense Hydrogen and Plasma Phase Transition
[47] | Marx D and Parrinello M 1996 J. Chem. Phys. 104 4077 | Ab initio path integral molecular dynamics: Basic ideas
[48] | Marx D, Tuckerman M E and Martyna G J 1999 Comput. Phys. Commun. 118 166 | Quantum dynamics via adiabatic ab initio centroid molecular dynamics
[49] | Guidon M, Hutter J and VandeVondele J 2009 J. Chem. Theory Comput. 5 3010 | Robust Periodic Hartree−Fock Exchange for Large-Scale Simulations Using Gaussian Basis Sets
[50] | Kapil V et al 2019 Comput. Phys. Commun. 236 214 | i-PI 2.0: A universal force engine for advanced molecular simulations
[51] | Ceriotti M, Manolopoulos D E and Parrinello M 2011 J. Chem. Phys. 134 084104 | Accelerating the convergence of path integral dynamics with a generalized Langevin equation
[52] | Vandevondele J, Krack M, Mohamed F, Parrinello M, Chassaing T and Hutter J 2005 Comput. Phys. Commun. 167 103 | Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach
[53] | Giannozzi P et al 2017 J. Phys.: Condens. Matter 29 465901 | Advanced capabilities for materials modelling with Quantum ESPRESSO
[54] | Calderín L, Karasiev V V and Trickey S B 2017 Comput. Phys. Commun. 221 118 | Kubo–Greenwood electrical conductivity formulation and implementation for projector augmented wave datasets
[55] | Rillo G, Morales M A, Ceperley D M and Pierleoni C 2019 Proc. Natl. Acad. Sci. USA 116 9770 | Optical properties of high-pressure fluid hydrogen across molecular dissociation
[56] | Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207 | Hybrid functionals based on a screened Coulomb potential
[57] | Kang D, Zhang S, Hou Y, Gao C, Meng C, Zeng J and Yuan J 2019 Phys. Plasmas 26 092701 | Thermally driven Fermi glass states in warm dense matter: Effects on terahertz and direct-current conductivities
[58] | Wu X, Walter E J, Rappe A M, Car R and Selloni A 2009 Phys. Rev. B 80 115201 | Hybrid density functional calculations of the band gap of