[1] | Meng X W, Wang Y, Zhao Y J and Huang J P 2011 J. Phys. Chem. B 115 4768 | Gating of a Water Nanochannel Driven by Dipolar Molecules
[2] | Li J, Gong X, Lu H, Li D, Fang H and Zhou R 2007 Proc. Natl. Acad. Sci. USA 104 3687 | Electrostatic gating of a nanometer water channel
[3] | Koenig D R, Weig E M and Kotthaus J P 2008 Nat. Nanotechnol. 3 482 | Ultrasonically driven nanomechanical single-electron shuttle
[4] | Ghosh S, Sood A and Kumar N J S 2003 Science 299 1042 | Carbon Nanotube Flow Sensors
[5] | Litvinchuk S, Tanaka H, Miyatake T, Pasini D, Tanaka T, Bollot G, Mareda J and Matile S 2007 Nat. Mater. 6 576 | Synthetic pores with reactive signal amplifiers as artificial tongues
[6] | Hummer G, Rasaiah J C and Noworyta J P 2001 Nature 414 188 | Water conduction through the hydrophobic channel of a carbon nanotube
[7] | Gong X, Li J, Lu H, Wan R, Li J, Hu J and Fang H 2007 Nat. Nanotechnol. 2 709 | A charge-driven molecular water pump
[8] | Köfinger J, Hummer G and Dellago C 2008 Proc. Natl. Acad. Sci. USA 105 13218 | Macroscopically ordered water in nanopores
[9] | Wan R, Lu H, Li J, Bao J, Hu J and Fang H 2009 Phys. Chem. Chem. Phys. 11 9898 | Concerted orientation induced unidirectional water transport through nanochannels
[10] | Wan R, Li J, Lu H and Fang H 2005 J. Am. Chem. Soc. 127 7166 | Controllable Water Channel Gating of Nanometer Dimensions
[11] | Tu Y, Lu H, Zhang Y, Huynh T and Zhou R 2013 J. Chem. Phys. 138 015104 | Capability of charge signal conversion and transmission by water chains confined inside Y-shaped carbon nanotubes
[12] | Tu Y, Zhou R and Fang H 2010 Nanoscale 2 1976 | Signal transmission, conversion and multiplication by polar molecules confined in nanochannels
[13] | Tu Y, Xiu P, Wan R, Hu J, Zhou R and Fang H 2009 Proc. Natl. Acad. Sci. USA 106 18120 | Water-mediated signal multiplication with Y-shaped carbon nanotubes
[14] | Lv M, He B, Liu Z, Xiu P and Tu Y 2014 J. Chem. Phys. 141 044707 | Charge-signal multiplication mediated by urea wires inside Y-shaped carbon nanotubes
[15] | Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W and Klein M L 1983 J. Chem. Phys. 79 926 | Comparison of simple potential functions for simulating liquid water
[16] | Berendsen H J C, van der Spoel D and van Drunen R 1995 Comput. Phys. Commun. 91 43 | GROMACS: A message-passing parallel molecular dynamics implementation
[17] | Hess B, Kutzner C, van der Spoel D and Lindahl E 2008 J. Chem. Theory Comput. 4 435 | GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation
[18] | Darden T, York D and Pedersen L J T 1993 J. Chem. Phys. 98 10089 | Particle mesh Ewald: An N ⋅log( N ) method for Ewald sums in large systems
[19] | Essmann U, Perera L, Berkowitz M L, Darden T, Lee H and Pedersen L G 1995 J. Chem. Phys. 103 8577 | A smooth particle mesh Ewald method
[20] | Bussi G, Donadio D and Parrinello M 2007 J. Chem. Phys. 126 014101 | Canonical sampling through velocity rescaling
[21] | Hess B, Bekker H, Berendsen H J C and Fraaije J G E M 1997 J. Comput. Chem. 18 1463 | LINCS: A linear constraint solver for molecular simulations
[22] | Miyamoto S and Kollman P A 1992 J. Comput. Chem. 13 952 | Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models
[23] | Zeng S, Chen J, Wang X, Zhou G, Chen L and Dai C 2018 J. Phys. Chem. C 122 27681 | Selective Transport through the Ultrashort Carbon Nanotubes Embedded in Lipid Bilayers