[1] | Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777 | Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?
[2] | Schrödinger E 1935 Math. Proc. Cambridge Philos. Soc. 31 555 | Discussion of Probability Relations between Separated Systems
[3] | Schrödinger E 1936 Math. Proc. Cambridge Philos. Soc. 32 446 | Probability relations between separated systems
[4] | Bell J S 1987 Speakable and Unspeakable in Quantum Mechanics (Cambridge: Cambridge University Press) |
[5] | Werner R F 1989 Phys. Rev. A 40 4277 | Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model
[6] | Gühne O and Tóth G 2009 Phys. Rep. 474 1 | Entanglement detection
[7] | Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865 | Quantum entanglement
[8] | Peres A 1996 Phys. Rev. Lett. 76 1413 | Causality, Randomness, and the Microwave Background
[9] | Zyczkowski K and Horodecki P 1998 Phys. Rev. A 58 883 | Volume of the set of separable states
[10] | Li Y, Liu C, Wang Q, Zhang H and Hu L 2016 Optik 127 9788 | Tetrapartite entanglement of fermionic systems in noninertial frames
[11] | Vedral V, Plenio M B, Rippin M A and Knight P L 1997 Phys. Rev. Lett. 78 2275 | Quantifying Entanglement
[12] | Vedral V, Plenio M B, Jacobs K and Knight P L 1997 Phys. Rev. A 56 4452 | Statistical inference, distinguishability of quantum states, and quantum entanglement
[13] | Vedral V and Plenio M B 1998 Phys. Rev. A 57 1619 | Entanglement measures and purification procedures
[14] | Murao M, Plenio M B, Popescu S, Vedral V and Knight P L 1998 Phys. Rev. A 57 R4075 | Multiparticle entanglement purification protocols
[15] | Dür W, Cirac J I and Tarrach R 1999 Phys. Rev. Lett. 83 3562 | Separability and Distillability of Multiparticle Quantum Systems
[16] | Bennett C H, DiVicenzo D, Mor T, Shor P, Smolin J and Terhal B 1999 Phys. Rev. Lett. 82 5385 | Unextendible Product Bases and Bound Entanglement
[17] | Modi K, Brodutch A, Cable H, Patrek T and Vedral V 2012 Rev. Mod. Phys. 84 1655 | The classical-quantum boundary for correlations: Discord and related measures
[18] | Alsing P M, Fuentes-Schuller I, Mann R B and Tessier T E 2006 Phys. Rev. A 74 032326 | Entanglement of Dirac fields in noninertial frames
[19] | Montero M, León J and Martínez M 2011 Phys. Rev. A 84 042320 | Fermionic entanglement extinction in noninertial frames
[20] | Shamirzaie M, Esfahani B N and Soltani M 2012 Int. J. Theor. Phys. 51 787 | Tripartite Entanglements in Noninertial Frames
[21] | Metwally N 2013 Int. J. Mod. Phys. B 27 1350155 | USEFULNESS CLASSES OF TRAVELING ENTANGLED CHANNELS IN NONINERTIAL FRAMES
[22] | Torres-Arenas A J, López-Zúñiga E O, Saldaña-Herrera J A, Dong Q, Sun G H and Dong S H 2019 Chin. Phys. B 28 070301 | Tetrapartite entanglement measures of W-class in noninertial frames
[23] | Dong Q, Sanchez M A A, Yáñez I L, Sun G H and Dong S H 2019 Phys. Scr. 94 105101 | Tetrapartite entanglement measures of GHZ state with uniform acceleration
[24] | Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895 | Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels
[25] | Bennett C H, Bernstein E, Brassard G and Vazirani U 1997 SIAM J. Comput. 26 1411 | Quantum Complexity Theory
[26] | Bouwmeester D, Ekert A and Zeilinger A 2000 The Physics of Quantum Information (Berlin: Springer-Verlag) |
[27] | Smith A and Mann R B 2012 Phys. Rev. A 86 012306 | Persistence of tripartite nonlocality for noninertial observers
[28] | Dür W, Vidal G and Cirac J I 2000 Phys. Rev. A 62 062314 | Three qubits can be entangled in two inequivalent ways
[29] | Wang J and Jiang J 2011 Phys. Rev. A 83 022314 | Multipartite entanglement of fermionic systems in noninertial frames
[30] | Qiang W C, Sun G H, Camacho-Nieto O and Dong S H 2017 arXiv:1711.04230v1[quant-ph] | Multipartite entanglement of fermionic systems in noninertial frames revisited
[31] | Wang J and Jiang J 2018 Phys. Rev. A 97 029902 | Erratum: Multipartite entanglement of fermionic systems in noninertial frames [Phys. Rev. A 83 , 022314 (2011)]
[32] | Hwang M R, Park D and Jung E 2011 Phys. Rev. A 83 012111 | Tripartite entanglement in a noninertial frame
[33] | Yao Y, Xiao X, Ge L, Wang X G and Sun C P 2014 Phys. Rev. A 89 042336 | Quantum Fisher information in noninertial frames
[34] | Khan S 2014 Ann. Phys. 348 270 | Tripartite entanglement of fermionic system in accelerated frames
[35] | Khan S, Khan N A and Khan M K 2014 Commun. Theor. Phys. 61 281 | Non-Maximal Tripartite Entanglement Degradation of Dirac and Scalar Fields in Non-Inertial Frames
[36] | Bruschi D E, Dragan A, Fuentes I and Louko J 2012 Phys. Rev. D 86 025026 | Particle and antiparticle bosonic entanglement in noninertial frames
[37] | Martín-Martínez E and Fuentes I 2011 Phys. Rev. A 83 052306 | Redistribution of particle and antiparticle entanglement in noninertial frames
[38] | Mehri-Dehnavi H, Mirza B, Mohammadzadeh H and Rahimi R 2011 Ann. Phys. 326 1320 | Pseudo-entanglement evaluated in noninertial frames
[39] | Park D K 2016 Quantum Inf. Process. 15 3189 | Tripartite entanglement dynamics in the presence of Markovian or non-Markovian environment
[40] | Torres-Arenas A J, Dong Q, Sun G H, Qiang W C and Dong S H 2019 Phys. Lett. B 789 93 | Entanglement measures of W-state in noninertial frames
[41] | Qiang W C, Dong Q, Mercado Sanchez M A, Sun G H and Dong S H 2019 Quantum Inf. Process. 18 314 | Entanglement property of the Werner state in accelerated frames
[42] | Dong Q, Torres-Arenas A J, Sun G H, Qiang W C and Dong S H 2019 Front. Phys. 14 21603 | Entanglement measures of a new type pseudo-pure state in accelerated frames
[43] | Sharma K K and Pandey S N 2016 Quantum Inf. Process. 15 4995 | Robustness of Greenberger $$\textendash $$ – Horne $$\textendash $$ – Zeilinger and W states against Dzyaloshinskii-Moriya interaction
[44] | Park D 2012 J. Phys. A 45 415308 | Tripartite entanglement-dependence of tripartite non-locality in non-inertial frames
[45] | Eltschka C, Osterloh A, Siewert J and Uhlmann A 2008 New J. Phys. 10 043014 | Three-tangle for mixtures of generalized GHZ and generalized W states
[46] | Zhao J L, Zhang Y D and Yang M 2018 Acta Phys. Sin. 67 140302 (in Chinese) | Influence of noice on tripartite quantum probe state
[47] | Socolovsky M 2013 arXiv:1304.2833v2[gr-qc] | Rindler Space and Unruh Effect
[48] | Nakahara M, Wan Y and Sasaki Y 2013 Diversities in Quantum Computation and Quantum Information (Singapore: World Scientific) |
[49] | Takagi S 1986 Prog. Theor. Phys. Suppl. 88 1 | Vacuum Noise and Stress Induced by Uniform Acceleration
[50] | Martín-Martínez E, Garay L J and León J 2010 Phys. Rev. D 82 064006 | Unveiling quantum entanglement degradation near a Schwarzschild black hole
[51] | Williams C P 2010 Explorations in Quantum Computing (New York: Springer) |
[52] | Oliveira D S and Ramos R V 2010 Quantum Inf. Process. 9 497 | Residual entanglement with negativity for pure four-qubit quantum states
[53] | Sabín C and García-Alcaine G 2008 Eur. Phys. J. D 48 435 | A classification of entanglement in three-qubit systems
[54] | von Neumann J 1996 Mathematical Foundations of Quantum Mechanics (New Jersey: Princeton University Press) |