[1] | Gurvitch M and Fiory A T 1987 Phys. Rev. Lett. 59 1337 | Resistivity of and to 1100 K: Absence of saturation and its implications
[2] | Hwang H Y et al 1994 Phys. Rev. Lett. 72 2636 | Scaling of the temperature dependent Hall effect in
[3] | Harris J M et al 1995 Phys. Rev. Lett. 75 1391 | Violation of Kohler's Rule in the Normal-State Magnetoresistance of and
[4] | Timusk T and Statt B 1999 Rep. Prog. Phys. 62 61 | The pseudogap in high-temperature superconductors: an experimental survey
[5] | Marshall D S et al 1996 Phys. Rev. Lett. 76 4841 | Unconventional Electronic Structure Evolution with Hole Doping in : Angle-Resolved Photoemission Results
[6] | Norman M R, Ding H et al 1998 Nature 392 157 | Destruction of the Fermi surface in underdoped high-Tc superconductors
[7] | Shen K M et al 2005 Science 307 901 | Nodal Quasiparticles and Antinodal Charge Ordering in Ca2-xNaxCuO2Cl2
[8] | Kanigel A et al 2006 Nat. Phys. 2 447 | Evolution of the pseudogap from Fermi arcs to the nodal liquid
[9] | Lee W S et al 2007 Phys. Rev. B 75 195116 | Aspects of electron-phonon self-energy revealed from angle-resolved photoemission spectroscopy
[10] | Yang H B et al 2008 Nature 456 77 | Emergence of preformed Cooper pairs from the doped Mott insulating state in Bi2Sr2CaCu2O8+δ
[11] | Leyraud N D et al 2007 Nature 447 565 | Quantum oscillations and the Fermi surface in an underdoped high-Tc superconductor
[12] | Bangura A F et al 2008 Phys. Rev. Lett. 100 047004 | Small Fermi Surface Pockets in Underdoped High Temperature Superconductors: Observation of Shubnikovâde Haas Oscillations in
[13] | Yelland E A et al 2008 Phys. Rev. Lett. 100 047003 | Quantum Oscillations in the Underdoped Cuprate
[14] | Meng J Q et al 2009 Nature 462 335 | Coexistence of Fermi arcs and Fermi pockets in a high-Tc copper oxide superconductor
[15] | Chaterjee U et al 2011 Proc. Natl. Acad. Sci. USA 108 9346 | Electronic phase diagram of high-temperature copper oxide superconductors
[16] | Keimer B et al 2015 Nature 518 179 | From quantum matter to high-temperature superconductivity in copper oxides
[17] | Manako T et al 1992 Phys. Rev. B 46 11019 | Transport and structural study of single crystals prepared by the KCl flux method
[18] | Mackenzie A P et al 1996 Phys. Rev. B 53 5848 | Normal-state magnetotransport in superconducting to millikelvin temperatures
[19] | Zhao L et al 2010 Chin. Phys. Lett. 27 087401 | High-Quality Large-Sized Single Crystals of Pb-Doped Bi 2 Sr 2 CuO 6+δ High- T c Superconductors Grown with Traveling Solvent Floating Zone Method
[20] | Zhou X J et al 2002 J. Electron Spectrosc. Relat. Phenom. 126 145 | High resolution angle-resolved photoemission study of high temperature superconductors: charge-ordering, bilayer splitting and electronâphonon coupling
[21] | Yoshida T et al 2006 Phys. Rev. B 74 224510 | Systematic doping evolution of the underlying Fermi surface of
[22] | Feng D L et al 2001 Phys. Rev. Lett. 86 5550 | Bilayer Splitting in the Electronic Structure of Heavily Overdoped
[23] | Chuang Y D et al 2001 Phys. Rev. Lett. 87 117002 | Doubling of the Bands in Overdoped : Evidence for -Axis Bilayer Coupling
[24] | Barnes S E and Maekawa S 2003 Phys. Rev. B 67 224513 | Bilayer splitting in overdoped high- cuprates
[25] | Liu G D et al 2008 Rev. Sci. Instrum. 79 023105 | Development of a vacuum ultraviolet laser-based angle-resolved photoemission system with a superhigh energy resolution better than 1âmeV
[26] | Nakamae S et al 2003 Phys. Rev. B 68 100502 | Electronic ground state of heavily overdoped nonsuperconducting
[27] | Koitzsch A et al 2004 Phys. Rev. B 69 220505 | Origin of the shadow Fermi surface in -based cuprates
[28] | Nakamaya K et al 2006 Phys. Rev. B 74 054505 | Shadow bands in single-layered studied by angle-resolved photoemission spectroscopy
[29] | Mans A et al 2006 Phys. Rev. Lett. 96 107007 | Experimental Proof of a Structural Origin for the Shadow Fermi Surface of
[30] | Lifshitz I M et al 1960 Sov. Phys. JETP 2 831 | SOME PROBLEMS OF THE ELECTRON THEORY OF METALS I. CLASSICAL AND QUANTUM MECHANICS OF ELECTRONS IN METALS
[31] | Liu C et al 2010 Nat. Phys. 6 419 | Evidence for a Lifshitz transition in electron-doped iron arsenic superconductors at the onset of superconductivity
[32] | Benhabib S et al 2015 Phys. Rev. Lett. 114 147001 | Collapse of the Normal-State Pseudogap at a Lifshitz Transition in the Cuprate Superconductor
[33] | Shi X et al 2017 Nat. Commun. 8 14988 | Enhanced superconductivity accompanying a Lifshitz transition in electron-doped FeSe monolayer