[1] | Kamihara Y et al 2008 J. Am. Chem. Soc. 130 3296 | Iron-Based Layered Superconductor La[O 1- x F x ]FeAs ( x = 0.05â0.12) with T c = 26 K
[2] | Ren Z A et al 2008 Chin. Phys. Lett. 25 2215 | Superconductivity at 55 K in Iron-Based F-Doped Layered Quaternary Compound Sm[O 1- x F x ] FeAs
[3] | Rotter M et al 2008 Phys. Rev. Lett. 101 107006 | Superconductivity at 38Â K in the Iron Arsenide
[4] | Chen X H et al 2008 Nature 453 761 | Superconductivity at 43âK in SmFeAsO1-xFx
[5] | Hsu F C et al 2008 Proc. Natl. Acad. Sci. USA 105 14262 | Superconductivity in the PbO-type structure  -FeSe
[6] | Wang X C et al 2008 Solid State Commun. 148 538 | The superconductivity at 18 K in LiFeAs system
[7] | Yakita H et al 2014 J. Am. Chem. Soc. 136 846 | A New Layered Iron Arsenide Superconductor: (Ca,Pr)FeAs 2
[8] | Chen D Y et al 2016 Chin. Phys. Lett. 33 067402 | Superconductivity in Undoped CaFe 2 As 2 Single Crystals
[9] | Lu X F et al 2014 Phys. Rev. B 89 020507 | Superconductivity in LiFeO Fe Se with anti-PbO-type spacer layers
[10] | Guo J G et al 2010 Phys. Rev. B 82 180520 | Superconductivity in the iron selenide
[11] | Yu J et al 2017 Sci. Bull. 62 218 | Discovery of a novel 112-type iron-pnictide and La-doping induced superconductivity in Eu 1â x La x FeAs 2 ( x = 0â0.15)
[12] | Wang X C et al 2017 Chin. Phys. Lett. 34 077401 | Revisiting the Electron-Doped SmFeAsO: Enhanced Superconductivity up to 58.6 K by Th and F Codoping
[13] | Hosono H et al 2018 Mater. Today 21 278 | Recent advances in iron-based superconductors toward applications
[14] | Pallecchi I et al 2015 Supercond. Sci. Technol. 28 114005 | Application potential of Fe-based superconductors
[15] | Kida T et al 2009 J. Phys. Soc. Jpn. 78 113701 | Upper Critical Fields of the 11-System Iron-Chalcogenide Superconductor FeSe 0.25 Te 0.75
[16] | Katase T et al 2011 Nat. Commun. 2 409 | Advantageous grain boundaries in iron pnictide superconductors
[17] | Zhang X P et al 2017 IEEE Trans. Appl. Supercond. 27 7300705 | Superconducting Properties of 100-m Class Sr0.6K0.4Fe2As2 Tape and Pancake Coils
[18] | Zhang X P and Ma Y W 2013 Chin. Sci. Bull. 58 986 | Development of iron-based superconducting materials for applications
[19] | Pyon S et al 2018 Supercond. Sci. Technol. 31 055016 | Improvements of fabrication processes and enhancement of critical current densities in (Ba,K)Fe 2 As 2 HIP wires and tapes
[20] | Wang Q Y et al 2012 Chin. Phys. Lett. 29 037402 | Interface-Induced High-Temperature Superconductivity in Single Unit-Cell FeSe Films on SrTiO 3
[21] | He S L et al 2013 Nat. Mater. 12 605 | Phase diagram and electronic indication of high-temperature superconductivity at 65âK in single-layer FeSe films
[22] | Mizuguchi Y et al 2009 Appl. Phys. Express 2 083004 | Fabrication of the Iron-Based Superconducting Wire Using Fe(Se,Te)
[23] | Jia J F 2015 Sci. Bull. 60 1368 | Superconductivity at 65 K in monolayer FeSe by ex situ Meissner effect measurement
[24] | Dong C H et al 2013 Chin. Phys. B 22 087401 | Exploration of iron-chalcogenide superconductors
[25] | Si W D et al 2013 Nat. Commun. 4 1347 | High current superconductivity in FeSe0.5Te0.5-coated conductors at 30 tesla
[26] | Ozaki T et al 2012 J. Appl. Phys. 111 013912 | Enhancement of superconducting properties in FeSe wires using a quenching technique
[27] | Mizuguchi Y et al 2011 Supercond. Sci. Technol. 24 125003 | Transport properties of single- and three-core FeSe wires fabricated by a novel chemical-transformation PIT process
[28] | Li X et al 2016 J. Supercond. Novel Magn. 29 1755 | Fabrication of FeSe 0 . 5 Te 0 . 5 Superconducting Wires by an Ex Situ Powder-in-Tube Method
[29] | Gao Z S et al 2011 Supercond. Sci. Technol. 24 065022 | Superconducting properties of FeSe wires and tapes prepared by a gas diffusion technique
[30] | Feng J Q et al 2016 Mater. Lett. 170 31 | Fabrication of FeSe superconducting tapes with high-energy ball milling aided PIT process
[31] | Yuan P S et al 2015 Supercond. Sci. Technol. 28 065009 | High performance FeSe 0.5 Te 0.5 thin films grown at low temperature by pulsed laser deposition
[32] | Li X et al 2015 Physica C 517 16 | Improvement of superconductivity in Fe1+yTe0.6Se0.4 induced by annealing with CaF2 and SmF3
[33] | Taen T et al 2009 Phys. Rev. B 80 092502 | Superconductivity at in single-crystalline
[34] | Sun Y et al 2016 Sci. Rep. 6 32290 | Influence of interstitial Fe to the phase diagram of Fe1+yTe1âxSe x single crystals
[35] | Chen J T et al 2016 J. Phys. Soc. Jpn. 85 104714 | Effects of Iodine Annealing on Fe 1+ y Te 0.6 Se 0.4
[36] | Vallance S R et al 2009 Adv. Mater. 21 4502 | Ultrarapid Microwave Synthesis of Superconducting Refractory Carbides
[37] | Rybakov K I et al 2013 J. Am. Ceram. Soc. 96 1003 | A Review of Microwave-Assisted Polymer Chemistry (MAPC)
[38] | Muir S W et al 2012 Mater. Res. Bull. 47 798 | Rapid microwave synthesis of the iron arsenides NdFeAsO and NdFe0.9Co0.1AsO
[39] | Ding Q P et al 2011 Supercond. Sci. Technol. 24 075025 | Low-temperature synthesis of FeTe 0.5 Se 0.5 polycrystals with a high transport critical current density
[40] | Lim E H H, Tan K Y, Liew J Y C et al 2015 J. Supercond. Novel Magn. 28 2839 | Synthesis of Bulk FeTe1âx Se x (x = 0.1â0.5) at Ambient Pressure
[41] | Fedorchenko A V, Grechnev G E, Desnenko V A et al 2011 Low Temp. Phys. 37 83 | Magnetic and superconducting properties of FeSe1âxTex (xâ¼0, 0.5, and 1.0)
[42] | Sun Y, Tsuchiya Y, Yamada T et al 2014 Physica C 504 12 | Chalcogen (O2, S, Se, Te) atmosphere annealing induced bulk superconductivity in Fe1+yTe1âxSex single crystal
[43] | Bean C P 1964 Rev. Mod. Phys. 36 31 | Magnetization of High-Field Superconductors
[44] | Ahn J H and Oh S 2013 Curr. Appl. Phys. 13 1096 | Effect of hot-consolidation method on the superconducting properties of B- and C-doped FeSe0.5Te0.5
[45] | Liu G H, Xia T L, Yuan X Y et al 2016 Mater. Des. 106 349 | Fast synthesis of Fe 1.1 Se 1âx Te x superconductors in a self-heating and furnace-free way
[46] | Li X, Shi X T, Wang J P et al 2015 J. Alloys Compd. 644 523 | Synthesis of high-quality FeSe 0.5 Te 0.5 polycrystal using an easy one-step technique