High-Quality InSb Grown on Semi-Insulting GaAs Substrates by Metalorganic Chemical Vapor Deposition for Hall Sensor Application

  • Received Date: October 17, 2018
  • Published Date: December 31, 2018
  • High-quality InSb epilayers are grown on semi-insulting GaAs substrates by metalorganic chemical vapor deposition using an indium pre-deposition technique. The influence of V/III ratio and indium pre-deposition time on the surface morphology, crystalline quality and electrical properties of the InSb epilayer is systematically investigated using Nomarski microscopy, atomic force microscopy, high-resolution x-ray diffraction, Hall measurement and contactless sheet resistance measurement. It is found that a 2-μm-thick InSb epilayer grown at 450C with a V/III ratio of 5 and an indium pre-deposition time of 2.5 s exhibits the optimum material quality, with a root-mean-square surface roughness of only 1.2 nm, an XRD rocking curve with full width at half maximum of 358 arcsec and a room-temperature electron mobility of 4.6×104 cm2/Vs. These values are comparable with those grown by molecular beam epitaxy. Hall sensors are fabricated utilizing a 600-nm-thick InSb epilayer. The output Hall voltages of these sensors exceed 10 mV with the input voltage of 1 V at 9.3 mT and the electron mobility of 3.2×104 cm2/Vs is determined, which indicates a strong potential for Hall applications.
  • Article Text

  • [1]
    Heremans J 1993 J. Phys. D 26 1149 doi: 10.1088/0022-3727/26/8/001

    CrossRef Google Scholar

    [2]
    Kim W Y et al. 2005 J. Appl. Phys. 97 10D507 doi: 10.1063/1.1855231

    CrossRef Google Scholar

    [3]
    Ashley T et al. 2004 Proceedings of 7th International Conference on Solid-State and Integrated Circuits Technology Beijing, China 18–21 October 2004 3 2253 doi: 10.1109/ICSICT.2004.1435293

    CrossRef Google Scholar

    [4]
    Bennett B R et al. 2005 Solid-State Electron. 49 1875 doi: 10.1016/j.sse.2005.09.008

    CrossRef Google Scholar

    [5]
    Camargo E G et al. 2007 IEEE Sens. J. 7 1335 doi: 10.1109/JSEN.2007.902948

    CrossRef Google Scholar

    [6]
    Kimukin I et al. 2004 IEEE J. Sel. Top. Quantum Electron. 10 766 doi: 10.1109/JSTQE.2004.833891

    CrossRef Google Scholar

    [7]
    Li Z G et al. 2008 Jpn. J. Appl. Phys. 47 558 doi: 10.1143/JJAP.47.558

    CrossRef Google Scholar

    [8]
    Weng X et al. 2005 J. Appl. Phys. 97 043713 doi: 10.1063/1.1841466

    CrossRef Google Scholar

    [9]
    Zhao X M et al. 2017 Chin. Phys. Lett. 34 076105 doi: 10.1088/0256-307X/34/7/076105

    CrossRef Google Scholar

    [10]
    Biefeld R M and Hebner G A 1991 J. Cryst. Growth 109 272 doi: 10.1016/0022-02489190189-C

    CrossRef Google Scholar

    [11]
    Biefeld R M 2002 Mater. Sci. Eng. R 36 105 doi: 10.1016/S0927-796X0200002-5

    CrossRef Google Scholar

    [12]
    Partin D L, Green L and Heremans J 1994 J. Electron. Mater. 23 75 doi: 10.1007/BF02655249

    CrossRef Google Scholar

Catalog

    Article views (391) PDF downloads (294) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return