[1] | Heremans J 1993 J. Phys. D 26 1149 | Solid state magnetic field sensors and applications
[2] | Kim W Y et al 2005 J. Appl. Phys. 97 10D507 | Enhanced Hall voltage in a gate-controlled InSb Hall device
[3] | Ashley T et al 2004 Proceedings of 7th International Conference on Solid-State and Integrated Circuits Technology (Beijing, China 18–21 October 2004) 3 2253 | Novel insb-based quantum well transistors for ultra-high speed, low power logic applications
[4] | Bennett B R et al 2005 Solid-State Electron. 49 1875 | Antimonide-based compound semiconductors for electronic devices: A review
[5] | Camargo E G et al 2007 IEEE Sens. J. 7 1335 | High-Sensitivity Temperature Measurement With Miniaturized InSb Mid-IR Sensor
[6] | Kimukin I et al 2004 IEEE J. Sel. Top. Quantum Electron. 10 766 | High-Speed InSb Photodetectors on GaAs for Mid-IR Applications
[7] | Li Z G et al 2008 Jpn. J. Appl. Phys. 47 558 | Thin InSb films on GaAs substrates by Molecular Beam Epitaxy
[8] | Weng X et al 2005 J. Appl. Phys. 97 043713 | Effects of buffer layers on the structural and electronic properties of InSb films
[9] | Zhao X M et al 2017 Chin. Phys. Lett. 34 076105 | Growth and Characterization of InSb Thin Films on GaAs (001) without Any Buffer Layers by MBE
[10] | Biefeld R M and Hebner G A 1991 J. Cryst. Growth 109 272 | Growth of InSb on GaAs by metalorganic chemical vapor deposition
[11] | Biefeld R M 2002 Mater. Sci. Eng. R 36 105 | The metal-organic chemical vapor deposition and properties of IIIâV antimony-based semiconductor materials
[12] | Partin D L, Green L and Heremans J 1994 J. Electron. Mater. 23 75 | Growth of high mobility InSb by metalorganic chemical vapor deposition