[1] | Goennenwein S T B and Bauer G E W 2012 Nat. Nanotechnol. 7 145 | Electron spins blow hot and cold
[2] | Bauer G E W, Saitoh E and van Wees B J 2012 Nat. Mater. 11 391 | Spin caloritronics
[3] | Jeon K R, Min B C, Spiesser A, Saito H, Shin S C, Yuasa S and Jansen R 2014 Nat. Mater. 13 360 | Voltage tuning of thermal spin current in ferromagnetic tunnel contacts to semiconductors
[4] | Chang P H, Bahramy M S, Nagaosa N and Nikolić B K 2014 Nano Lett. 14 3779 | Giant Thermoelectric Effect in Graphene-Based Topological Insulators with Heavy Adatoms and Nanopores
[5] | Johnson M and Silsbee R H 1987 Phys. Rev. B 35 4959 | Thermodynamic analysis of interfacial transport and of the thermomagnetoelectric system
[6] | Johnson M and Silsbee R H 1988 Phys. Rev. B 37 5326 | Spin-injection experiment
[7] | Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Maekawa S and Saitoh E 2008 Nature 455 778 | Observation of the spin Seebeck effect
[8] | Zeng M, Feng Y and Liang G 2011 Nano Lett. 11 1369 | Graphene-based Spin Caloritronics
[9] | Ni Y, Yao K, Fu H, Gao G, Zhu S and Wang S 2013 Sci. Rep. 3 1380 | Spin Seebeck Effect and Thermal Colossal Magnetoresistance in Graphene Nanoribbon Heterojunction
[10] | Huang H, Zheng A, Gao G and Yao K 2018 J. Magn. Magn. Mater. 449 522 | Thermal spin filtering effect and giant magnetoresistance of half-metallic graphene nanoribbon co-doped with non-metallic Nitrogen and Boron
[11] | Tang X Q, Ye X M, Tan X Y and Ren D H 2018 Sci. Rep. 8 927 | Metal-free magnetism, spin-dependent Seebeck effect, and spin-Seebeck diode effect in armchair graphene nanoribbons
[12] | Yu D, Lupton E M, Gao H J, Zhang C and Liu F 2008 Nano Res. 1 497 | A unified geometric rule for designing nanomagnetism in graphene
[13] | Taylor J, Guo H and Wang J 2001 Phys. Rev. B 63 121104(R) | Ab initio modeling of open systems: Charge transfer, electron conduction, and molecular switching of a device
[14] | Taylor J, Guo H and Wang J 2001 Phys. Rev. B 63 245407(R) | Ab initio modeling of quantum transport properties of molecular electronic devices
[15] | Brandbyge M, Mozos J L, Ordejón P, Taylor J and Stokbro K 2002 Phys. Rev. B 65 165401 | Density-functional method for nonequilibrium electron transport
[16] | Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P and Sánchez-Portal D 2002 J. Phys.: Condens. Matter 14 2745 | The SIESTA method for ab initio order- N materials simulation
[17] | Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 | Generalized Gradient Approximation Made Simple
[18] | Troullier N and Martins J 1991 Phys. Rev. B 43 1993 | Efficient pseudopotentials for plane-wave calculations
[19] | Büttiker M, Imry Y, Landauer R and Pinhas S 1985 Phys. Rev. B 31 6207 | Generalized many-channel conductance formula with application to small rings
[20] | Zhang J, Li X and Yang J 2014 Appl. Phys. Lett. 104 172403 | SiN-SiC nanofilm: A nano-functional ceramic with bipolar magnetic semiconducting character
[21] | Kim W Y and Kim K S 2008 Nat. Nanotechnol. 3 408 | Prediction of very large values of magnetoresistance in a graphene nanoribbon device
[22] | Cho W J, Cho Y, Min S K, Kim W Y and Kim K S 1993 J. Am. Chem. Soc. 115 9389 | Structure and binding of alkanethiolates on gold and silver surfaces: implications for self-assembled monolayers
[23] | Zhang Y T, Jiang H, Sun Q F and Xie X C 2010 Phys. Rev. B 81 165404 | Spin polarization and giant magnetoresistance effect induced by magnetization in zigzag graphene nanoribbons