[1] | Aranson I S and Kramer L 2002 Rev. Mod. Phys. 74 99 | The world of the complex Ginzburg-Landau equation
[2] | Malomed B A 2005 Encyclopedia Nonlinear Sci. p 157 |
[3] | Bakonyi Z, Michaelis D et al 2002 J. Opt. Soc. Am. B 19 487 | Dissipative solitons and their critical slowing down near a supercritical bifurcation
[4] | Ultanir E A, Stegeman G I et al 2003 Phys. Rev. Lett. 90 253903 | Stable Dissipative Solitons in Semiconductor Optical Amplifiers
[5] | Petviashvili V I and Sergeev A M 1984 Dokl. Akad. Nauk SSSR 276 1380 |
[6] | Akhmediev N N, Ankiewicz A et al 1998 J. Opt. Soc. Am. B 15 515 | Stable soliton pairs in optical transmission lines and fiber lasers
[7] | Boudebs G, Cherukulappurath S et al 2003 Opt. Commun. 219 427 | Experimental and theoretical study of higher-order nonlinearities in chalcogenide glasses
[8] | Zhan C, Zhu D, Li D et al 2002 J. Opt. Soc. Am. B 19 369 | Third- and fifth-order optical nonlinearities in a new stilbazolium derivative
[9] | Mihalache D, Mazilu D, Lederer F et al 2006 Phys. Rev. Lett. 97 073904 | Stable Vortex Tori in the Three-Dimensional Cubic-Quintic Ginzburg-Landau Equation
[10] | Vladimirov A G, McSloy J M, Skryabin D V et al 2002 Phys. Rev. E 65 046606 | Two-dimensional clusters of solitary structures in driven optical cavities
[11] | Skryabin D V and Vladimirov A G 2002 Phys. Rev. Lett. 89 044101 | Vortex Induced Rotation of Clusters of Localized States in the Complex Ginzburg-Landau Equation
[12] | Li H, Lai S, Qui Y et al 2017 Opt. Express 25 27948 | Stable dissipative optical vortex clusters by inhomogeneous effective diffusion
[13] | He Y J, Wang H Z and Malomed B A 2007 Opt. Express 15 17502 | Fusion of necklace-ring patterns into vortex and fundamental solitons in dissipative media
[14] | Liu B, He Y J, Qiu Z R et al 2009 Opt. Express 17 12203 | Annularly and radially phase-modulated spatiotemporal necklace-ring patterns in the GinzburgâLandau and SwiftâHohenberg equations
[15] | He Y J, Malomed B A, Mihalache D et al 2009 Opt. Lett. 34 2976 | Bound states of one-, two-, and three-dimensional solitons in complex Ginzburg–Landau equations with a linear potential
[16] | Djoko M and Kofane T C 2017 Commun. Nonlinear Sci. & Numer. Simul. 48 179 | Dissipative optical bullets modeled by the cubic-quintic-septic complex GinzburgâLandau equation with higher-order dispersions
[17] | Mihalache D, Mazilu D, Lederer F et al 2009 Eur. Phys. J. Spec. Top. 173 245 | Collisions between spinning and nonspinning co-axial three-dimensional Ginzburg-Landau solitons
[18] | Liu B, He X D and Li S J 2011 Phys. Rev. E 84 056607 | Phase controlling of collisions between solitons in the two-dimensional complex Ginzburg-Landau equation without viscosity
[19] | Liu B, Liu Y F and He X D 2014 Opt. Express 22 26203 | Impact of phase on collision between vortex solitons in three-dimensional cubic-quintic complex Ginzburg-Landau equation
[20] | Skarka V, Aleksić N B et al 2017 Opt. Express 25 10090 | Self-structuring of stable dissipative breathing vortex solitons in a colloidal nanosuspension
[21] | He Y J, Malomed B A, Ye F et al 2010 J. Opt. Soc. Am. B 27 1139 | Dynamics of dissipative spatial solitons over a sharp potential
[22] | Liu B and He X D 2011 Opt. Express 19 20009 | Continuous generation of âlight bulletsâ in dissipative media by an annularly periodic potential
[23] | Liu B, He X D and Li S J 2013 Opt. Express 21 5561 | Continuous emission of fundamental solitons from vortices in dissipative media by a radial-azimuthal potential
[24] | Cleff C, Gütlich B and Denz C 2008 Phys. Rev. Lett. 100 233902 | Gradient Induced Motion Control of Drifting Solitary Structures in a Nonlinear Optical Single Feedback Experiment
[25] | Szameit A, Burghoff J et al 2006 Opt. Express 14 6055 | Two-dimensional soliton in cubic fs laser written waveguide arrays in fused silica