Crystal planes | Bond | $D_{\rm n\alpha}$ (nm) | $n_{\rm \alpha}$ | $I_{\rm \alpha}$ | $\sum n_{\rm c}$ | $S$ (nm$^{2}$) | $\rho$ (nm$^{-2}$) |
---|---|---|---|---|---|---|---|
$(0001)$ | A | 0.14399 | 1.20756 | 6 | 7.80459 | 0.05387 | 144.88611 |
B | 0.24940 | 0.05096 | 6 | ||||
C | 0.25147 | 0.03092 | 6 | ||||
D | 0.28798 | 0.01132 | 6 | ||||
$(10\bar{1}0)$ | B | 0.24940 | 0.05096 | 2 | 0.19451 | 0.15121 | 1.28636 |
C | 0.24940 | 0.03092 | 2 | ||||
E | 0.30314 | 0.00692 | 4 | ||||
H | 0.39254 | 0.00038 | 8 | ||||
$(11\bar{2}0)$ | A | 0.14399 | 1.20756 | 4 | 4.95231 | 0.26190 | 18.90941 |
D | 0.28798 | 0.01132 | 4 | ||||
E | 0.28798 | 0.00692 | 8 | ||||
F | 0.30314 | 0.00311 | 4 | ||||
G | 0.33560 | 0.00189 | 4 | ||||
I | 0.41812 | 0.00021 | 4 | ||||
J | 0.41812 | 0.00013 | 4 | ||||
$(01\bar{1}2)$ | B | 0.24940 | 0.05096 | 2 | 0.16529 | 0.09842 | 1.67947 |
C | 0.25147 | 0.03092 | 2 | ||||
H | 0.39254 | 0.00038 | 4 |
Crystal planes | Bond | $D_{\rm n\alpha}$ (nm) | $n_{\rm \alpha}$ | $I_{\rm \alpha}$ | $\sum n_{\rm c}$ | $S$ (nm$^{2}$) | $\rho$ (nm$^{-2}$) |
---|---|---|---|---|---|---|---|
(100)-B | B | 0.25705 | 0.04236 | 8 | 0.34959 | 0.13215 | 2.64547 |
E | 0.36352 | 0.00134 | 8 | ||||
(100)-N | C | 0.25705 | 0.02654 | 8 | 0.21901 | 0.13215 | 1.65734 |
F | 0.36352 | 0.00084 | 8 | ||||
(111)-B | B | 0.25705 | 0.04236 | 12 | 0.50943 | 0.11444 | 4.45144 |
H | 0.44522 | 0.00009 | 12 | ||||
(111)-N | C | 0.25705 | 0.02654 | 12 | 0.31915 | 0.11444 | 2.78874 |
I | 0.44522 | 0.00006 | 12 | ||||
(110) | A | 0.15741 | 0.84576 | 8 | 7.11424 | 0.18688 | 38.06774 |
B | 0.25705 | 0.04236 | 4 | ||||
C | 0.25705 | 0.02654 | 4 | ||||
D | 0.30141 | 0.00793 | 8 | ||||
E | 0.36352 | 0.00134 | 4 | ||||
F | 0.36352 | 0.00084 | 4 | ||||
I | 0.44522 | 0.00006 | 8 |
Crystal planes | Bond | $D_{\rm n\alpha}$ (nm) | $n_{\rm \alpha}$ | $I_{\rm \alpha}$ | $\sum n_{\rm c}$ | $S$ (nm$^{2}$) | $\rho$ (nm$^{-2}$) |
---|---|---|---|---|---|---|---|
(001) | A | 0.13428 | 2.32482 | 4 | 13.40268 | 0.21701 | 61.76156 |
B | 0.19512 | 1.02226 | 4 | ||||
L | 0.35453 | 0.00198 | 4 | ||||
O | 0.38288 | 0.00073 | 8 | ||||
Y | 0.46582 | 0.00005 | 4 | ||||
Z1 | 0.46582 | 0.00005 | 8 | ||||
(110) | A | 0.13428 | 2.32482 | 4 | 14.49779 | 0.34761 | 41.70731 |
B | 0.19512 | 1.02226 | 4 | ||||
D | 0.26381 | 0.10256 | 8 | ||||
H | 0.29601 | 0.03877 | 4 | ||||
I | 0.32812 | 0.00433 | 8 | ||||
J | 0.32940 | 0.01222 | 8 | ||||
R | 0.42201 | 0.00019 | 8 | ||||
(100) | D | 0.26381 | 0.10256 | 4 | 0.51130 | 0.24580 | 2.08020 |
E | 0.26381 | 0.00035 | 4 | ||||
F | 0.26769 | 0.00933 | 8 | ||||
G | 0.26769 | 0.00296 | 8 | ||||
W | 0.45920 | 0.00001 | 2 | ||||
X | 0.46582 | 0.00048 | 2 | ||||
Y | 0.46582 | 0.00005 | 8 |
$\Delta \rho$ (%) | ${\rm h}(0001)$ | ${\rm h}(10\bar{1}0)$ | ${\rm h}(11\bar{2}0)$ | ${\rm h}(01\bar{1}2)$ |
---|---|---|---|---|
c(100)-B | 192.83 | 69.13 | 150.91 | 44.67 |
c(100)-N | 195.48 | 25.20 | 167.77 | 1.33 |
c(111)-B | 188.08 | 110.32 | 123.78 | 90.43 |
c(111)-N | 192.45 | 73.73 | 148.59 | 49.65 |
c(110) | 116.73 | 186.93 | 67.30 | 183.11 |
$\Delta \rho$ (%) | L(001) | L(110) | L(100) |
---|---|---|---|
c(100)-N | 90.27 | 190.61 | 189.69 |
c(100)-B | 49.47 | 194.06 | 193.48 |
c(111)-B | 126.62 | 184.44 | 182.95 |
c(111)-N | 94.42 | 190.11 | 189.15 |
c(110) | 189.77 | 97.12 | 89.67 |
[1] | Lv M Z et al 2018 Appl. Surf. Sci. 439 780 | Auger electron spectroscopy analysis for growth interface of cubic boron nitride single crystals synthesized under high pressure and high temperature
[2] | Wu W X et al 2008 Acta Phys. Sin. 57 2486 (in Chinese) |
[3] | Yang D P et al 1993 Diamond Relat. Mater. 2 174 | CO2-laser-induced gas-phase synthesis of micron-sized diamond powders: recent results and future developments
[4] | Hou L X et al 2012 Appl. Surf. Sci. 258 3800 | X-ray photoelectron spectroscopy study of cubic boron nitride single crystals grown under high pressure and high temperature
[5] | Fukunaga O 2000 Diamond Relat. Mater. 9 7 | The equilibrium phase boundary between hexagonal and cubic boron nitride
[6] | Xu B et al 2015 Integr. Ferroelectr. 163 139 | Characterization of Growth Interface for Cubic Boron Nitride Synthesized by the Static High Temperature-High Pressure Catalytic Method
[7] | Wang Y L et al 2012 Chin. Phys. B 21 060301 | A density functional theory study on parameters fitting of ultra long armchair ( n , n ) single walled boron nitride nanotubes
[8] | Yu R H 1981 Sci. Bull. 26 217 (in Chinese) |
[9] | Lin C et al 2016 Comput. Mater. Sci. 111 41 | Analysis of the effect of alloy elements on allotropic transformation in titanium alloys with the use of cohesive energy
[10] | Lin C et al 2016 Scr. Mater. 117 41 | A gradient nanostructure generated in pure copper by platen friction sliding deformation
[11] | Lin C et al 2015 Comput. Mater. Sci. 101 168 | Calculation of the cohesive energy of solids with the use of valence electron structure parameters
[12] | Cheng K J and Cheng S Y 1993 J. Sci. Technol. Rev. 12 30 (in Chinese) |
[13] | Cheng K J and Cheng S Y 2001 Theor. Appl. Fract. Mech. 37 19 | Boundary conditions of electrons at the interface
[14] | Zhang R L 1992 The Empricial Electron Theory of Solid and Molecules (Changchun: Jilin Science and Technology Press) p 478 (in Chinese) |
[15] | Xu B et al 2015 Integr. Ferroelectr. 162 85 | Lattice Parameters of Hexagonal and Cubic Boron Nitrides at High Temperature and High Pressure
[16] | Xu B et al 2014 Entropy 16 912 | Fracture morphology and XRD layered characterization of cBN Cake
[17] | Yamane H et al 1987 J. Solid State Chem. 71 1 | High- and low-temperature phases of lithium boron nitride, Li3BN2: Preparation, phase relation, crystal structure, and ionic conductivity