[1] | Liu M, Johnston M B and Snaith H J 2013 Nature 501 395 | Efficient planar heterojunction perovskite solar cells by vapour deposition
[2] | Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K and Grätzel M 2013 Nature 499 316 | Sequential deposition as a route to high-performance perovskite-sensitized solar cells
[3] | Edri E, Kirmayer S, Mukhopadhyay S, Gartsman K, Hodes G and Cahen D 2014 Nat. Commun. 5 3461 | Elucidating the charge carrier separation and working mechanism of CH3NH3PbI3−xClx perovskite solar cells
[4] | Frost J M, Butler K T, Brivio F, Hendon C H, van Schilfgaarde M and Walsh A 2014 Nano Lett. 14 2584 | Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells
[5] | Lee M M, Teuscher J, Miyasaka T, Murakami T N and Snaith H J 2012 Science 338 643 | Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites
[6] | Marchioro A, Teuscher J, Friedrich D, Kunst M, van de Krol R, Moehl T, Grätzel M and Moser J E 2014 Nat. Photon. 8 250 | Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells
[7] | Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Grätzel M, Mhaisalkar S and Sum T C 2013 Science 342 344 | Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3
[8] | Kim H S, Lee J W, Yantara N, Boix P P, Kulkarni S A, Mhaisalkar S, Grätzel M and Park N G 2013 Nano Lett. 13 2412 | High Efficiency Solid-State Sensitized Solar Cell-Based on Submicrometer Rutile TiO 2 Nanorod and CH 3 NH 3 PbI 3 Perovskite Sensitizer
[9] | Green M A, Ho-Baillie A and Snaith H J 2014 Nat. Photon. 8 506 | The emergence of perovskite solar cells
[10] | Zhou H, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z, You J, Liu Y and Yang Y 2014 Science 345 542 | Interface engineering of highly efficient perovskite solar cells
[11] | Jeon N J, Noh J H, Yang W S, Kim Y C, Ryu S, Seo J and Seok S I 2015 Nature 517 476 | Compositional engineering of perovskite materials for high-performance solar cells
[12] | Scandale W, Still D A, Carnera A, Della Mea G, De Salvador D, Milan R, Vomiero A, Baricordi S, Dalpiaz P and Fiorini M 2007 Phys. Rev. Lett. 98 154801 | High-Efficiency Volume Reflection of an Ultrarelativistic Proton Beam with a Bent Silicon Crystal
[13] | Zeng L, Yi Y, Hong C, Liu J, Feng N, Duan X, Kimerling L and Alamariu B 2006 Appl. Phys. Lett. 89 111111 | Efficiency enhancement in Si solar cells by textured photonic crystal back reflector
[14] | Wu X 2004 Sol. Energy 77 803 | High-efficiency polycrystalline CdTe thin-film solar cells
[15] | Chirilă A, Buecheler S, Pianezzi F, Bloesch P, Gretener C, Uhl A R, Fella C, Kranz L, Perrenoud J and Seyrling S 2011 Nat. Mater. 10 857 | Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films
[16] | Christians J A, Miranda Herrera P A, Kamat P V 2015 J. Am. Chem. Soc. 137 1530 | Transformation of the Excited State and Photovoltaic Efficiency of CH 3 NH 3 PbI 3 Perovskite upon Controlled Exposure to Humidified Air
[17] | Wei Z, Chen H, Yan K and Yang S 2014 Angew. Chem. 126 13455 | Inkjet Printing and Instant Chemical Transformation of a CH 3 NH 3 PbI 3 /Nanocarbon Electrode and Interface for Planar Perovskite Solar Cells
[18] | De Wolf S, Holovsky J, Moon S J, Löer P, Niesen B, Ledinsky M, Haug F J, Yum J H and Ballif C 2014 J. Phys. Chem. Lett. 5 1035 | Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance
[19] | Lindblad R, Bi D, Park B W, Oscarsson J, Gorgoi M, Siegbahn H, Odelius M, Johansson E M and Rensmo H K 2014 J. Phys. Chem. Lett. 5 648 | Electronic Structure of TiO 2 /CH 3 NH 3 PbI 3 Perovskite Solar Cell Interfaces
[20] | Heo J H, Han H J, Kim D, Ahn T and Im S H 2015 Energy Environ. Sci. 8 1602 | Hysteresis-less inverted CH 3 NH 3 PbI 3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency
[21] | Yang J, Siempelkamp B D, Liu D and Kelly T L 2015 ACS Nano 9 1955 | Investigation of CH 3 NH 3 PbI 3 Degradation Rates and Mechanisms in Controlled Humidity Environments Using in Situ Techniques
[22] | Han Y, Meyer S, Dkhissi Y, Weber K, Pringle J M, Bach U, Spiccia L and Cheng Y B 2015 J. Mater. Chem. A 3 8139 | Degradation observations of encapsulated planar CH 3 NH 3 PbI 3 perovskite solar cells at high temperatures and humidity
[23] | Niu G, Li W, Meng F, Wang L, Dong H and Qiu Y 2014 J. Mater. Chem. A 2 705 | Study on the stability of CH 3 NH 3 PbI 3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells
[24] | Schoonman J 2015 Chem. Phys. Lett. 619 193 | Organic–inorganic lead halide perovskite solar cell materials: A possible stability problem
[25] | Lang L, Yang J H, Liu H R, Xiang H and Gong X 2014 Phys. Lett. A 378 290 | First-principles study on the electronic and optical properties of cubic ABX3 halide perovskites
[26] | Umari P, Mosconi E and De Angelis F 2014 Sci. Rep. 4 4467 | Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 Perovskites for Solar Cell Applications
[27] | Feng J and Xiao B 2014 J. Phys. Chem. Lett. 5 1278 | Crystal Structures, Optical Properties, and Effective Mass Tensors of CH 3 NH 3 PbX 3 (X = I and Br) Phases Predicted from HSE06
[28] | Yin W J, Shi T and Yan Y 2014 Adv. Mater. 26 4653 | Unique Properties of Halide Perovskites as Possible Origins of the Superior Solar Cell Performance
[29] | Blöchl P E 1994 Phys. Rev. B 50 17953 | Projector augmented-wave method
[30] | Kresse G and Hafner J 1994 Phys. Rev. B 49 14251 | Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium
[31] | Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 | Generalized Gradient Approximation Made Simple
[32] | Bučko T, Lebègue S, Hafner J and Ángyán J 2013 Phys. Rev. B 87 064110 | Tkatchenko-Scheffler van der Waals correction method with and without self-consistent screening applied to solids
[33] | Togo A, Oba F, Tanaka I 2008 Phys. Rev. B 78 134106 | First-principles calculations of the ferroelastic transition between rutile-type and -type at high pressures
[34] | Poglitsch A and Weber D 1983 J. Chem. Phys. 87 5 | Kinetic study on inclusion compound formation reaction of .beta.-cyclodextrin polymer with thiocyanate using electric field
[35] | Kawamura Y, Mashiyama H and Hasebe K 2002 J. Phys. Soc. Jpn. 71 1694 | Structural Study on Cubic–Tetragonal Transition of CH 3 NH 3 PbI 3
[36] | Agiorgousis M L, Sun Y Y, Zeng H and Zhang S 2014 J. Am. Chem. Soc. 136 14570 | Strong Covalency-Induced Recombination Centers in Perovskite Solar Cell Material CH 3 NH 3 PbI 3
[37] | Wang Y, Gould T, Dobson J F, Zhang H, Yang H, Yao X and Zhao H 2014 Phys. Chem. Chem. Phys. 16 1424 | Density functional theory analysis of structural and electronic properties of orthorhombic perovskite CH 3 NH 3 PbI 3
[38] | Zhong W, Vanderbilt D and Rabe K M 1995 Phys. Rev. B 52 6301 | First-principles theory of ferroelectric phase transitions for perovskites: The case of
[39] | Stoumpos C C, Malliakas C D and Kanatzidis M G 2013 Inorg. Chem. 52 9019 | Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties
[40] | Leguy A M A, Hu Y, Campoy-Quiles M, Alonso M I, Weber O J, Azarhoosh P, van Schilfgaarde M, Weller M T, Bein T, Nelson J, Docampo P and Barnes P R F 2015 Chem. Mater. 27 3397 | Reversible Hydration of CH 3 NH 3 PbI 3 in Films, Single Crystals, and Solar Cells
[41] | Yin W J, Shi T and Yan Y 2014 Appl. Phys. Lett. 104 063903 | Unusual defect physics in CH 3 NH 3 PbI 3 perovskite solar cell absorber
[42] | Buin A, Pietsch P, Xu J, Voznyy O, Ip A H, Comin R and Sargent E H 2014 Nano Lett. 14 6281 | Materials Processing Routes to Trap-Free Halide Perovskites
[43] | Conings B, Drijkoningen J, Gauquelin N, Babayigit A, D'Haen J, D'Olieslaeger L, Ethirajan A, Verbeeck J, Manca J, Mosconi E, De Angelis F and Boyen H G 2015 Adv. Energy Mater. 5 1500477 | Intrinsic Thermal Instability of Methylammonium Lead Trihalide Perovskite
[44] | Noh J H, Im S H, Heo J H, Mandal T N and Seok S I 2013 Nano Lett. 13 1764 | Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells
[45] | Noel N K, Stranks S D, Abate A, Wehrenfennig C, Guarnera S, Haghighirad A A, Sadhanala A, Eperon G E, Pathak S K, Johnston M B, Petrozza A, Herz L M and Snaith H J 2014 Energy Environ. Sci. 7 3061 | Lead-free organic–inorganic tin halide perovskites for photovoltaic applications
[46] | Shen Q, Ogomi Y, Chang J, Toyoda T, Fujiwara K, Yoshino K, Sato K, Yamazaki K, Akimoto M and Kuga Y 2015 J. Mater. Chem. A 3 9308 | Optical absorption, charge separation and recombination dynamics in Sn/Pb cocktail perovskite solar cells and their relationships to photovoltaic performances
[47] | Han D, Dai C and Chen S 2017 J. Semicond. 38 011006 | Calculation studies on point defects in perovskite solar cells
[48] | Yin W J, Yang J H, Kang J, Yan Y and Wei S H 2015 J. Mater. Chem. A 3 8926 | Halide perovskite materials for solar cells: a theoretical review
[49] | Du M H 2014 J. Mater. Chem. A 2 9091 | Efficient carrier transport in halide perovskites: theoretical perspectives
[50] | Xu P, Chen S, Xiang H J, Gong X G and Wei S H 2014 Chem. Mater. 26 6068 | Influence of Defects and Synthesis Conditions on the Photovoltaic Performance of Perovskite Semiconductor CsSnI 3
[51] | Mounet N and Marzari N 2005 Phys. Rev. B 71 205214 | First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives