[1] | Potari G, Madarasz D, Nagy L, Laszlo B, Sapi A, Oszko A et al 2013 Langmuir 29 3061 | Rh-Induced Support Transformation Phenomena in Titanate Nanowire and Nanotube Catalysts
[2] | Zhou W J, Du G J, Hu P G, Li G H, Wang D Z, Liu H et al 2011 J. Mater. Chem. 21 7937 | Nanoheterostructures on TiO2 nanobelts achieved by acid hydrothermal method with enhanced photocatalytic and gas sensitive performance
[3] | Liao H C, Lee C H, Ho Y C, Jao M H, Tsai C M, Chuang C M et al 2012 J. Mater. Chem. 22 10589 | Diketopyrrolopyrrole-based oligomer modified TiO2 nanorods for air-stable and all solution processed poly(3-hexylthiophene):TiO2 bulk heterojunction inverted solar cell
[4] | Zhao B, Jiang S M, Su C, Cai R, Ran R et al 2013 J. Mater. Chem. A 1 12310 | A 3D porous architecture composed of TiO2 nanotubes connected with a carbon nanofiber matrix for fast energy storage
[5] | Myahkostupov M, Zamkov M and Castellano F N 2011 Energy Environ. Sci. 4 998 | Dye-sensitized photovoltaic properties of hydrothermally prepared TiO2 nanotubes
[6] | Zwilling V, Darque-Ceretti E, Boutry-Forveille A, David D, Perrin M Y and Aucouturier M 1999 Surf. Interface Anal. 27 629 | Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy
[7] | Mor G K, Varghese O K, Paulose M, Mukherjee N and Grimes C A 2003 J. Mater. Res. 18 2588 | Fabrication of tapered, conical-shaped titania nanotubes
[8] | Cai Q, Paulose M, Varghese O K and Grimes C A 2005 J. Mater. Res. 20 230 | The Effect of Electrolyte Composition on the Fabrication of Self-Organized Titanium Oxide Nanotube Arrays by Anodic Oxidation
[9] | Mor G K, Shankar K, Paulose M, Varghese O K and Grimes C A 2005 Nano Lett. 5 191 | Enhanced Photocleavage of Water Using Titania Nanotube Arrays
[10] | Qi J, Liu W, Biswas C, Zhang G, Sun L, Wang Z, Hu X and Zhang Y 2015 Opt. Commun. 349 198 | Enhanced power conversion efficiency of CdS quantum dot sensitized solar cells with ZnO nanowire arrays as the photoanodes
[11] | Hachiya S, Onishi Y, Shen Q and Toyoda T 2011 J. Appl. Phys. 110 054319 | Dependences of the optical absorption and photovoltaic properties of CdS quantum dot-sensitized solar cells on the CdS quantum dot adsorption time
[12] | Chuang C H M, Brown P R, Bulović V and Bawendi M G 2014 Nat. Mater. 13 796 | Improved performance and stability in quantum dot solar cells through band alignment engineering
[13] | Yao X, Chang Y, Li G, Mi L, Liu S, Wang H, Yu Y and Jiang Y 2015 Sol. Energy Mater. Sol. Cells 137 287 | Inverted quantum-dot solar cells with depleted heterojunction structure employing CdS as the electron acceptor
[14] | Marshall A R, Young M R, Nozik A J, Beard M C and Luther J M 2015 J. Phys. Chem. Lett. 6 2892 | Exploration of Metal Chloride Uptake for Improved Performance Characteristics of PbSe Quantum Dot Solar Cells
[15] | Sun W T, Yu Y, Pan H Y, Gao X F, Chen Q and Peng L M 2008 J. Am. Chem. Soc. 130 1124 | CdS Quantum Dots Sensitized TiO 2 Nanotube-Array Photoelectrodes
[16] | Shao Z B, Zhu W, Li Z, Yang Q H and Wang G Z 2012 J. Phys. Chem. C 116 2438 | One-Step Fabrication of CdS Nanoparticle-Sensitized TiO 2 Nanotube Arrays via Electrodeposition
[17] | Li L, Yang X C, Gao J J, Tian H N, Zhao J Z, Hagfeldt A et al 2011 J. Am. Chem. Soc. 133 8457 |
[18] | Hoseinzadeh T, Ghorannevis Z and Ghoranneviss M 2017 Appl. Phys. A 123 436 | Effect of different electrolyte concentrations on TiO2 anodized nanotubes physical properties
[19] | Sun H, Zhao P, Zhang F, Liu Y and Hao J 2015 Nanoscale Res. Lett. 10 382 | Ag2S/CdS/TiO2 Nanotube Array Films with High Photocurrent Density by Spotting Sample Method
[20] | Wood D and Tauc J 1972 Phys. Rev. B 5 3144 | Weak Absorption Tails in Amorphous Semiconductors
[21] | Jung S W, Kim J H, Kim H, Choi C J and Ahn K S 2011 J. Appl. Phys. 110 044313 | CdS quantum dots grown by in situ chemical bath deposition for quantum dot-sensitized solar cells
[22] | Xie Y B 2016 Thin Solid Films 598 115 | Photoelectrochemical performance of cadmium sulfide quantum dots modified titania nanotube arrays