Beam Steering Analysis in Optically Phased Vertical Cavity Surface Emitting Laser Array

Funds: Supported by the 'Supporting First Action' Joint Foundation for Outstanding Postdoctoral Program under Grant Nos Y7YBSH0001 and Y7BSH14001, the National Natural Science Foundation of China under Grant No 61434006, and the National Key Basic Research Program of China under Grant No 2017YFB0102302.
  • Received Date: October 09, 2017
  • Published Date: February 28, 2018
  • Beam steering in implant defined coherently coupled vertical cavity surface emitting laser (VCSEL) arrays is simulated using the FDTD solution software. Angular deflection dependent on relative phase differences among elements, inter-element spacing, element size and emitted wavelength is analyzed detailedly and systematically. We design and fabricate 1×2 implant defined VCSEL arrays for optimum beam steering performance. Electronically controlled beam steering with a maximum deflection angle of 1.6 is successfully achieved in the 1×2 VCSEL arrays. The percentage of the power in the central lobe is above 39% when steering. The results show that the steering is controllable. Compared with other beam steering methods, the fabrication process is simple and of low cost.
  • Article Text

  • [1]
    Niven G and Mooradian A 2006 Proc. 13th International Display Workshops LAD2-2 Otsu, Japan 6–8 December 2006

    Google Scholar

    [2]
    Matsuda T, Abe F and Takahashi H 1978 Appl. Opt. 17 878 doi: 10.1364/AO.17.000878

    CrossRef Google Scholar

    [3]
    Wu M C, Solgaard O and Ford J E 2006 J. Lightwave Technol. 24 4433 doi: 10.1109/JLT.2006.886405

    CrossRef Google Scholar

    [4]
    Kozhenikov M, Basavanhally N R, Weld J D, Low Y L, Kolodner P, Bolle C A, Ryf R, Papazian A R, Olkhovets A, Pardo F, Kim J, Neilson D T, Aksyuk V A and Gates J V 2003 IEEE Photon. Technol. Lett. 15 993 doi: 10.1109/LPT.2003.813408

    CrossRef Google Scholar

    [5]
    Bishop D J, Giles C R and Austin G P 2002 IEEE Commun. Mag. 40 75 doi: 10.1109/35.989760

    CrossRef Google Scholar

    [6]
    Okada H, Bos P J and Onnagawa H 1998 Jpn. J. Appl. Phys. 37 2576 doi: 10.1143/JJAP.37.2576

    CrossRef Google Scholar

    [7]
    Mukai S, Watanabe M, Itoh H, Yajima H, Hosoi Y and Uekusa S 1985 Opt. Quantum Electron. 17 431 doi: 10.1007/BF00619569

    CrossRef Google Scholar

    [8]
    Kurosaka Y, Iwahashi S, Liang Y, Sakai K, Miyai E, Kunishi W, Ohnishi D and Noda S 2010 Nat. Photon. 4 447 doi: 10.1038/nphoton.2010.118

    CrossRef Google Scholar

    [9]
    Lehman A C and Choquette K D 2007 IEEE Photon. Technol. Lett. 19 1421 doi: 10.1109/LPT.2007.903503

    CrossRef Google Scholar

    [10]
    Xun M, Xu C, Xie Y Y, Zhu Y X, Mao M M, Xu K, Wang J, Liu J and Chen H D 2014 Electron. Lett. 50 1085 doi: 10.1049/el.2014.1298

    CrossRef Google Scholar

    [11]
    Xun M, Xu C, Deng J, Xie Y Y, Jiang G Q, Wang J, Xu K and Chen H D 2015 Opt. Lett. 40 2349 doi: 10.1364/OL.40.002349

    CrossRef Google Scholar

    [12]
    Lehman A C, Siriani D F and Choquette K D 2007 Electron. Lett. 43 1203 doi: 10.1049/el:20072083

    CrossRef Google Scholar

    [13]
    Johnson M T, Siriani D F, Sulkin J D and Choquette K D 2012 Appl. Phys. Lett. 101 031116 doi: 10.1063/1.4736406

    CrossRef Google Scholar

    [14]
    Xun M, Xu C, Xie Y Y, Deng J, Xu K and Chen H D 2015 IEEE J. Quantum Electron. 51 2600106 doi: 10.1109/JQE.2014.2369433

    CrossRef Google Scholar

  • Related Articles

    [1]SHEN Yi-Fan, DAI Kang, MU Bao-Xia, WANG Shu-Ying, CUI Xiu-Hua. Resonant Reaction in Rb--Cs Vapour Mixture Rb(5P1/2) + Cs(6P3/2) → Cs(8S1/2)+Rb(5S1/2) [J]. Chin. Phys. Lett., 2006, 23(5): 1173-1175.
    [2]HU Mu-Hong, WANG Zhi-Wen. Excitation Energies of 1s2 ns (6≤n≤9) States for Lithium-Like Systems from Z=11 to 20 [J]. Chin. Phys. Lett., 2005, 22(5): 1089-1092.
    [3]WANG Bao-Ling, HU Li-Li. Spectroscopic Properties of Kiton Red in Hybrid TiO2/Ormosil Films [J]. Chin. Phys. Lett., 2004, 21(11): 2216-2218.
    [4]LI Jia-Cheng, LI Shun-Guang, HU He-Fang, GAN Fu-Xi. Composition Dependence of Spectroscopic Properties of Er3+ Doped TeO2-WO3-ZnO Glasses [J]. Chin. Phys. Lett., 2004, 21(1): 176-178.
    [5]LIN Ao-Xiang, HU Li-Li, DAI Neng-Li, XU Shi-Qing, DAI Shi-Xun. Spectroscopic Properties of Yb3+-doped Germano-Silicate Glasses [J]. Chin. Phys. Lett., 2003, 20(10): 1838-1840.
    [6]SUN Wei, XIE Xiu-Ping, HUANG Wen, ZHONG Zhi-Ping, XU Cheng-Bin, XUE Ping, XU Xiang-Yuan. Autoionizing Distribution of the Triply Excited Double Rydberg States in La Atom [J]. Chin. Phys. Lett., 2000, 17(6): 405-407.
    [7]LÜ Jun, DAI Chang-jian, LI Cong-qi, LIU Zheng-dong, TANG Jing-chang. Spectroscopic Properties of Perturbed Ba 6p3/2ns Autoionizing States [J]. Chin. Phys. Lett., 1999, 16(8): 560-562.
    [8]XU Chengbin, XU Xiangyuan, HUANG Wen, XUE Ping, ZHAO Runchuan, ZHU Cheng, CHEN Dieyan. Autoionizing Process of the Double Rydberg State [J]. Chin. Phys. Lett., 1995, 12(12): 713-716.
    [9]DAI Changjian (C. J. Dai). Resonance Profiles of Mg 3pns Autoionizing States [J]. Chin. Phys. Lett., 1995, 12(3): 152-155.
    [10]LI Jing, ZHANG Sen, CHU Xiaofeng. Field Ionization Thresholds of (17, n1, n2, 0) and (17, n1, n2, 1) Stark States of Sr Atom [J]. Chin. Phys. Lett., 1993, 10(5): 282-285.

Catalog

    Article views (102) PDF downloads (836) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return