[1] | Trinkaus H and Wolfer W G 1984 J. Nucl. Mater. 122 552 | Conditions for dislocation loop punching by helium bubbles
[2] | Stubbins J F 1986 J. Nucl. Mater. 141 748 | Void swelling and radiation-induced phase transformation in high purity Fe-Ni-Cr alloys
[3] | Singh B N, A Foreman J E and Trinkaus H 1997 J. Nucl. Mater. 249 103 | Radiation hardening revisited: role of intracascade clustering
[4] | Sickafus K E, Grimes R W, Valdez J A et al 2007 Nat. Mater. 6 217 | Radiation-induced amorphization resistance and radiation tolerance in structurally related oxides
[5] | Odette G R and Lucas G E 1998 Radiat. Eff. Defects Solids 144 189 | Recent progress in understanding reactor pressure vessel steel embrittlement
[6] | Zinkle S J and Ghoniem N M 2000 Fusion Eng. Des. 51 55 | Operating temperature windows for fusion reactor structural materials
[7] | Victoria M, Baluc N, Bailat C et al 2000 J. Nucl. Mater. 276 114 | The microstructure and associated tensile properties of irradiated fcc and bcc metals
[8] | Diaz de la Rubia T, Zbib H M, Khraishi T A et al 2000 Nature 406 871 | Multiscale modelling of plastic flow localization in irradiated materials
[9] | Odette G R and Lucas G E 2001 JOM 53 18 | Embrittlement of nuclear reactor pressure vessels
[10] | Kurishita H, Kobayashi S, Nakai K et al 2008 J. Nucl. Mater. 377 34 | Development of ultra-fine grained W–(0.25–0.8)wt%TiC and its superior resistance to neutron and 3MeV He-ion irradiations
[11] | Fukuda M, Hasegawa A, Tanno T et al 2013 J. Nucl. Mater. 442 S273 | Property change of advanced tungsten alloys due to neutron irradiation
[12] | Kurishita H, Matsuso S, Arakawa H et al 2009 Adv. Mater. Res. 59 18 | Development of Nanostructured W and Mo Materials
[13] | Kurishita H, Kobayashi S, Nakai K et al 2007 Phys. Scr. T128 76 | Current status of ultra-fine grained W–TiC development for use in irradiation environments
[14] | Kurishita H, Amano Y, Kobayashi S et al 2007 J. Nucl. Mater. 367 1453 | Development of ultra-fine grained W–TiC and their mechanical properties for fusion applications
[15] | Chai J, Li Y H, Niu L L et al 2017 Nucl. Instrum. Methods Phys. Res. Sect. B 393 144 | First-principles investigation of the energetics of point defects at a grain boundary in tungsten
[16] | Tschopp M A, Solanki K N, Gao F et al 2012 Phys. Rev. B 85 064108 | Probing grain boundary sink strength at the nanoscale: Energetics and length scales of vacancy and interstitial absorption by grain boundaries in -Fe
[17] | Li X, Liu W, Xu Y et al 2013 Nucl. Fusion 53 123014 | An energetic and kinetic perspective of the grain-boundary role in healing radiation damage in tungsten
[18] | Li X, Liu W, Xu Y et al 2014 J. Nucl. Mater. 444 229 | Principal physical parameters characterizing the interactions between irradiation-induced point defects and several tilt symmetric grain boundaries in Fe, Mo and W
[19] | Bai X M, Voter A F, Hoagland R G et al 2010 Science 327 1631 | Efficient Annealing of Radiation Damage Near Grain Boundaries via Interstitial Emission
[20] | Chen D, Wang J, Chen T et al 2013 Sci. Rep. 3 1450 | Defect annihilation at grain boundaries in alpha-Fe
[21] | Li X, Liu W, Xu Y et al 2016 Acta Mater. 109 115 | Radiation resistance of nano-crystalline iron: Coupling of the fundamental segregation process and the annihilation of interstitials and vacancies near the grain boundaries
[22] | Li X, Duan G, Xu Y et al 2017 Nucl. Fusion 57 116055 | Annihilating vacancies via dynamic reflection and emission of interstitials in nano-crystal tungsten
[23] | Ashby M F 1969 Scr. Metall. 3 837 | On interface-reaction control of Nabarro-Herring creep and sintering
[24] | Siegel R W, Chang S M and Balluffi R W 1980 Acta Metall. 28 249 | Vacancy loss at grain boundaries in quenched polycrystalline gold
[25] | Han W Z, Demkowiczand M J, Fu E G et al 2012 Acta Mater. 60 6341 | Effect of grain boundary character on sink efficiency
[26] | Basu B K and Elbaum C 1965 Acta Metall. 13 1117 | Surface vacancy pits and vacancy diffusion in aluminum
[27] | Demkowicz M J, Anderoglu O, Zhang X et al 2011 J. Mater. Res. 26 1666 | The influence of ∑3 twin boundaries on the formation of radiation-induced defect clusters in nanotwinned Cu
[28] | King A H and Smith D A 1980 Philos. Mag. A 42 495 | On the mechanisms of point-defect absorption by grain and twin boundaries
[29] | Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 | Generalized Gradient Approximation Made Simple
[30] | Kresse G and Hafner J 1993 Phys. Rev. B 47 558 | Ab initio molecular dynamics for liquid metals
[31] | Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15 | Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
[32] | Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169 | Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
[33] | Hohenberg P and Kohn W 1964 Phys. Rev. B 136 864 | Inhomogeneous Electron Gas
[34] | Gonze X, Ghosez Ph and Godby R W 1997 Phys. Rev. Lett. 78 294 | Density-Functional Theory of Polar Insulators
[35] | Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 | From ultrasoft pseudopotentials to the projector augmented-wave method
[36] | Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244 | Accurate and simple analytic representation of the electron-gas correlation energy
[37] | Kittel C 1996 Introduction to Solid State Physics (New York: John Wiley and Sons) |
[38] | He W H, Gao X, Wang D et al 2107 Comput. Mater. Sci (submitted) |
[39] | Baskes M I and Vitek V 1985 Metall. Trans. A 16 1625 | Trapping of hydrogen and helium at grain boundaries in nickel: An atomistic study
[40] | Zhou X, Marchand D and McDowell D L 2016 Phys. Rev. Lett. 116 075502 | Chemomechanical Origin of Hydrogen Trapping at Grain Boundaries in fcc Metals
[41] | Becquart C S and Domain C 2007 Nucl. Instrum. Methods Phys. Res. Sect. B 255 23 | Ab initio calculations about intrinsic point defects and He in W
[42] | Maier K, Peo M, Saile B et al 1979 Philos. Mag. A 40 701 | High–temperature positron annihilation and vacancy formation in refractory metals
[43] | Nguyen-Manh D, Horsfield A P and Dudarev S L 2006 Phys. Rev. B 73 020101(R) | Self-interstitial atom defects in bcc transition metals: Group-specific trends
[44] | Kurtz R J and Heinisch H L 2004 J. Nucl. Mater. 329 1199 | The effects of grain boundary structure on binding of He in Fe