$\ell,m$ | $R_{\rm AA} (\ell,m)$ | $R_{\rm BB} (\ell,m)$ | $R_{\rm AB} (\ell,m)$ | $R_{\rm AC} (\ell,m)$ | $R_{\rm BC} (\ell,m)$ |
---|---|---|---|---|---|
0, 0 | 0 | 0 | $\frac{2}{5}$ | $\frac{2}{5}$ | $\frac{31}{45}$ |
1, 0 | $\frac{1}{5}$ | $\frac{11}{15}$ | $\frac{11}{15}-\frac{2\sqrt 3}{5\pi}$ | $\frac{4}{15}+\frac{2\sqrt 3}{5\pi}$ | $\frac{28}{45}+\frac{2\sqrt 3}{15\pi}$ |
0, 1 | $\frac{1}{5}$ | $\frac{11}{15}$ | $\frac{11}{15}-\frac{2\sqrt 3}{5\pi}$ | $\frac{4}{15}+\frac{2\sqrt 3}{5\pi}$ | $\frac{8}{15}+\frac{8\sqrt 3}{15\pi}$ |
1, 1 | $\frac{1}{5}$ | $\frac{11}{15}$ | $\frac{11}{15}-\frac{2\sqrt 3}{5\pi}$ | $\frac{4}{15}+\frac{2\sqrt 3}{5\pi}$ | $\frac{8}{9}-\frac{4\sqrt 3}{15\pi}$ |
2, 0 | $\frac{8}{5}-\frac{12\sqrt 3}{5\pi}$ | $\frac{32}{15}+\frac{12\sqrt 3}{5\pi}$ | $\frac{78}{15}-\frac{42\sqrt 3}{5\pi}$ | $-\frac{1}{3}+\frac{8\sqrt 3}{5\pi}$ | $\frac{22}{45}+\frac{4\sqrt 3}{15\pi}$ |
0, 2 | $\frac{8}{5}-\frac{12\sqrt 3}{5\pi}$ | $\frac{32}{15}+\frac{12\sqrt 3}{5\pi}$ | $\frac{78}{15}-\frac{42\sqrt 3}{5\pi}$ | $-\frac{1}{3}+\frac{8\sqrt 3}{5\pi}$ | $-\frac{11}{9}+\frac{56\sqrt 3}{15\pi}$ |
2, 2 | $\frac{8}{5}-\frac{12\sqrt 3}{5\pi}$ | $\frac{32}{15}+\frac{12\sqrt 3}{5\pi}$ | $\frac{78}{15}-\frac{42\sqrt 3}{5\pi}$ | $-\frac{1}{3}+\frac{8\sqrt 3}{5\pi}$ | $\frac{73}{45}-\frac{22\sqrt 3}{15\pi}$ |
2, 1 | $-\frac{2}{5}+\frac{10\sqrt 3}{5\pi}$ | $\frac{2}{15}+\frac{10\sqrt 3}{5\pi}$ | $\frac{-28}{15}+\frac{22\sqrt 3}{5\pi}$ | $-\frac{1}{3}+\frac{8\sqrt 3}{5\pi}$ | $\frac{22}{45}+\frac{8\sqrt 3}{15\pi}$ |
1, 2 | $-\frac{2}{5}+\frac{10\sqrt 3}{5\pi}$ | $\frac{2}{15}+\frac{10\sqrt 3}{5\pi}$ | $\frac{-28}{15}+\frac{22\sqrt 3}{5\pi}$ | $-\frac{28}{15}+\frac{22\sqrt 3}{5\pi}$ | $\frac{7}{3}-\frac{14\sqrt 3}{5\pi}$ |
3, 0 | $\frac{81}{5}-\frac{144\sqrt 3}{5\pi}$ | $\frac{251}{15}-\frac{144\sqrt 3}{5\pi}$ | $\frac{803}{15}-\frac{480\sqrt 3}{5\pi}$ | $-\frac{28}{3}+\frac{18\sqrt 3}{\pi}$ | $-\frac{89}{9}+\frac{292\sqrt 3}{15\pi}$ |
0, 3 | $\frac{81}{5}-\frac{144\sqrt 3}{5\pi}$ | $\frac{251}{15}-\frac{144\sqrt 3}{5\pi}$ | $\frac{803}{15}-\frac{480\sqrt 3}{5\pi}$ | $\frac{803}{15}-\frac{96\sqrt 3}{\pi}$ | $-\frac{1038}{15}+\frac{1906\sqrt 3}{15\pi}$ |
3, 3 | $\frac{81}{5}-\frac{144\sqrt 3}{5\pi}$ | $\frac{251}{15}-\frac{144\sqrt 3}{5\pi}$ | $\frac{803}{15}-\frac{480\sqrt 3}{5\pi}$ | $\frac{803}{15}-\frac{96\sqrt 3}{\pi}$ | $\frac{74}{3}-\frac{216\sqrt 3}{5\pi}$ |
$\ell,0$ | Exact $R_{\rm AA} (\ell,0) $ | Asymptotic $R_{\rm AA} (\ell,0) $ | Exact $R_{\rm AB} (\ell,0) $ | Asymptotic $R_{\rm AB} (\ell,0) $ |
---|---|---|---|---|
2, 0 | 0.27681064569 | 0.276595082 | 0.5688372784569 | 0.5687143277 |
3, 0 | 0.32172777821 | 0.321726774 | 0.6057593728413 | 0.6057511430 |
4, 0 | 0.35349108478 | 0.353491975 | 0.6333649394453 | 0.6333636575 |
5, 0 | 0.37810667106 | 0.378107222 | 0.6554303758082 | 0.6554303068 |
6, 0 | 0.39821395661 | 0.398214450 | 0.6738128283294 | 0.6738130995 |
7, 0 | 0.41521291133 | 0.415213402 | 0.6895672915379 | 0.6895676804 |
8, 0 | 0.42993753635 | 0.429938013 | 0.7033516419120 | 0.7033520774 |
9, 0 | 0.44292531890 | 0.442925803 | 0.7156040197147 | 0.7156044750 |
10, 0 | 0.45454316214 | 0.454543661 | 0.7266309659817 | 0.7266314319 |
[1] | Jeng M 2000 Am. J. Phys. 68 37 | Random walks and effective resistances on toroidal and cylindrical grids
[2] | Aitchison R E 1964 Am. J. Phys. 32 566 | Resistance between Adjacent Points of Liebman Mesh
[3] | Venezian G 1994 Am. J. Phys. 62 1000 | On the resistance between two points on a grid
[4] | Atkinson D F and van Steenwijk F J 1999 Am. J. Phys. 67 486 | Infinite resistive lattices
[5] | Wu F Y 2004 J. Phys. A Math. Gen. 37 6653 | Theory of resistor networks: the two-point resistance
[6] | Tan Z Z 2011 Resistor Network Model (Xi'an: Xidian University Press) (in Chinese) |
[7] | Cserti J 2000 Am. J. Phys. 68 896 | Application of the lattice Green’s function for calculating the resistance of an infinite network of resistors
[8] | Cserti J, Szechenyi G and David G 2011 J. Phys. A 44 215201 | Uniform tiling with electrical resistors
[9] | Owaidat M Q 2013 Am. J. Phys. 81 918 | Resistance calculation of the face-centered cubic lattice: Theory and experiment
[10] | Asad J H 2013 J. Stat. Phys. 150 1177 | Exact Evaluation of the Resistance in an Infinite Face-Centered Cubic Network
[11] | Owaidat M Q 2014 Appl. Phys. Res. 6 100 | Regular Resistor Lattice Networks in Two Dimensions (Archimedean Lattices)
[12] | Owaidat M Q, Asad J H and Khalifeh J M 2014 Mod. Phys. Lett. B 28 1450252 | Resistance calculation of the decorated centered cubic networks: Applications of the Green's function
[13] | Owaidat M Q and Asad J H 2016 Eur. Phys. J. Plus 131 309 | Resistance calculation of three-dimensional triangular and hexagonal prism lattices
[14] | Asad J H, Diab A A, Owaidat M Q, Hijjawi R S and Khalifeh J M 2014 Acta Phys. Pol. A 125 60 |
[15] | Asad J H, Hijjawi R S, Sakaji A J and Khalifeh J M 2005 Int. J. Mod. Phys. B 19 3713 | Infinite Body Centered Cubic Network of Identical Resistors
[16] | Owaidat M Q, Hijjawi R S and Khalifeh J M 2014 Eur. Phys. J. Appl. Phys. 68 10102 | The two-point capacitance of infinite triangular and honeycomb networks
[17] | Asad J H, Diab A A, Owaidat M Q and Khalifeh J M 2014 Acta Phys. Pol. A 126 777 | Perturbed Infinite 3D Simple Cubic Network of Identical Capacitors
[18] | Cserti J, Gyula D and Attila P 2002 Am. J. Phys. 70 153 | Perturbation of infinite networks of resistors
[19] | Owaidat M Q, Hijjawi R S and Khalifeh J M 2010 Mod. Phys. Lett. B 19 2057 | SUBSTITUTIONAL SINGLE RESISTOR IN AN INFINITE SQUARE LATTICE APPLICATION TO LATTICE GREEN'S FUNCTION
[20] | Owaidat M Q, Hijjawi R S and Khalifeh J M 2010 J. Phys. A 43 375204 | Interstitial single resistor in a network of resistors application of the lattice Green's function
[21] | Owaidat M Q, Hijjawi R S and Khalifeh J M 2012 Int. J. Theor. Phys. 51 3152 | Network with Two Extra Interstitial Resistors
[22] | Owaidat M Q, Hijjawi R S and Khalifeh J M 2014 Eur. Phys. J. Plus 129 29 | Perturbation theory of uniform tiling of space with resistors
[23] | Owaidat M Q, Asad J H and Tan Z Z 2016 Int. J. Mod. Phys. B Vol. 30 No. 24 1650166 | On the perturbation of a uniform tiling with resistors
[24] | Li B, Wang L and Casati G 2006 Appl. Phys. Lett. 88 143501 | Negative differential thermal resistance and thermal transistor
[25] | Zhang J Q et al 2014 Eur. Phys. J. B 87 122 | Effect of coupling displacement on thermal current of Frenkel-Kontorova lattices
[26] | Zhang J Q et al 2014 Eur. Phys. J. B 87 285 | Effect of correlation time of the colored noise in negative differential thermal resistance in Frenkel-Kontorova lattices
[27] | Zhang J Q et al 2016 AIP Adv. 6 075212 | Bidirectional negative differential thermal resistance phenomenon and its physical mechanism in the Frenkel-Kontorova lattices
[28] | Barton G 1989 Elements of Green's Functions and Propagation (Oxford: Oxford University Press) |
[29] | Duffy D G 2001 Green's Functions with Applications (New York: Chapman and Hall/CRC) |
[30] | Economou E 1983 Green's Functions in Quantum Physics (Berlin: Springer-Verlag) |
[31] | Barber M N and Ninham B W 1970 Random and Restricted Walks; Theory and Applications (New York: Gordon and Breach) |
[32] | Hughes B D 1995 Random Walks and Random Environments: Random Walks (Oxford: Clarendon) |
[33] | Wolfram T and Callaway J 1963 Phys. Rev. 130 2207 | Spin-Wave Impurity States in Ferromagnets
[34] | Syozi I 1972 Transformation of Ising Models (London: Academic Press) vol 1 |
[35] | Kotecky R, Salas J and Sokal A D 22008 Phys. Rev. Lett. 101 030601 | Phase Transition in the Three-State Potts Antiferromagnet on the Diced Lattice
[36] | Chen Q N, Qin, M P, Chen J, Wei Z C, Zhao H H, Normand B and Xiang T 2011 Phys. Rev. Lett. 107 165701 | Partial Order and Finite-Temperature Phase Transitions in Potts Models on Irregular Lattices
[37] | Deng Y J, Huang Y, Jacobsen J L, Salas J and Sokal A D 2011 Phys. Rev. Lett. 107 150601 | Finite-Temperature Phase Transition in a Class of Four-State Potts Antiferromagnets
[38] | Azimi-Tafreshi N, Dashti-Naserabadi H, Moghimi-Araghi S and Ruelle P 2010 J. Stat. Mech. P02004 |