[1] | Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 | Electric Field Effect in Atomically Thin Carbon Films
[2] | Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197 | Two-dimensional gas of massless Dirac fermions in graphene
[3] | Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109 | The electronic properties of graphene
[4] | Geim A K and Novoselov K S 2007 Nat. Mater. 6 183 | The rise of graphene
[5] | Kara A, Enriquez H, Seitsonen A P, Lew Yan Voon L C, Vizzini S, Aufray B and Oughaddou H 2012 Surf. Sci. Rep. 67 1 | A review on silicene — New candidate for electronics
[6] | Butler S Z, Hollen S M, Cao L, Cui Y, Gupta J A, Gutiérrez H R, Heinz T F, Hong S S, Huang J, Ismach A F, Johnston-Halperin E, Kuno M, Plashnitsa V V, Robinson R D, Ruoff R S, Salahuddin S, Shan J, Shi L, Spencer M G, Terrones M, Windl W and Goldberger J E 2013 ACS Nano 7 2898 | Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene
[7] | Xu M S, Liang T, Shi M M and Chen H Z 2013 Chem. Rev. 113 3766 | Graphene-Like Two-Dimensional Materials
[8] | Tao L, Cinquanta E, Chiappe D, Grazianetti C, Fanciulli M, Dubey M, Molle A and Akinwande D 2015 Nat. Nanotechnol. 10 227 | Silicene field-effect transistors operating at room temperature
[9] | Léandri C, Oughaddou H, Aufray B, Gay J M, Le Lay G, Ranguis A and Garreau Y 2007 Surf. Sci. 601 262 | Growth of Si nanostructures on Ag(001)
[10] | Kara A, Léandri C, Dávila M E, De Padova P, Ealet B, Oughaddou H, Aufray B and Le Lay G 2009 J. Supercond. Novel Magn. 22 259 | Physics of Silicene Stripes
[11] | Meng L, Wang Y L, Zhang L Z, Du S X, Wu R T, Li L F, Zhang Y, Li G, Zhou H T, Hofer W A and Gao H J 2013 Nano Lett. 13 685 | Buckled Silicene Formation on Ir(111)
[12] | Aizawa T, Suehara S and Otani S 2014 J. Phys. Chem. C 118 23049 | Silicene on Zirconium Carbide (111)
[13] | Lebègue S and Eriksson O 2009 Phys. Rev. B 79 115409 | Electronic structure of two-dimensional crystals from ab initio theory
[14] | Cahangirov S, Topsakal M, Aktürk E, Şahin H and Ciraci S 2009 Phys. Rev. Lett. 102 236804 | Two- and One-Dimensional Honeycomb Structures of Silicon and Germanium
[15] | Giovannetti G, Khomyakov P A, Brocks G, Kelly P J and van den Brink J 2007 Phys. Rev. B 76 073103 | Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations
[16] | Chen L, Liu C C, Feng B, He X, Cheng P, Ding Z, Meng S, Yao Y and Wu K 2012 Phys. Rev. Lett. 109 056804 | Evidence for Dirac Fermions in a Honeycomb Lattice Based on Silicon
[17] | DyrdałA and Barnaś J 2012 Phys. Status Solidi RRL 6 340 | Intrinsic spin Hall effect in silicene: transition from spin Hall to normal insulator
[18] | Li X L, Wang X R, Zhang L, Lee S and Dai H J 2008 Science 319 1229 | Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors
[19] | Han M Y, Özyilmaz B, Zhang Y and Kim P 2007 Phys. Rev. Lett. 98 206805 | Energy Band-Gap Engineering of Graphene Nanoribbons
[20] | Jiao L Y, Zhang L, Wang X R, Diankov G and Dai H J 2009 Nature 458 877 | Narrow graphene nanoribbons from carbon nanotubes
[21] | Ruffieux P, Wang S, Yang B, Sánchez-Sánchez C, Liu J, Dienel T, Talirz L, Shinde P, Pignedoli C A, Passerone D, Dumslaff T, Feng X, Müllen K and Fasel R 2016 Nature 531 489 | On-surface synthesis of graphene nanoribbons with zigzag edge topology
[22] | Magda G Z, Jin X, Hagymási I, Vancsó P, Osváth Z, Nemes-Incze P, Hwang C, Biró L P and Tapasztó L 2014 Nature 514 608 | Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons
[23] | Rachid Tchalala M, Enriquez H, Mayne A J, Kara A, Roth S, Silly M G, Bendounan A, Sirotti F, Greber T, Aufray B, Dujardin G, Ait Ali M and Oughaddou H 2013 Appl. Phys. Lett. 102 083107 | Formation of one-dimensional self-assembled silicon nanoribbons on Au(110)-(2 × 1)
[24] | De Padova P, Kubo O, Olivieri B, Quaresima C, Nakayama T, Aono M and Le Lay G 2012 Nano Lett. 12 5500 | Multilayer Silicene Nanoribbons
[25] | De Padova P, Quaresima C, Ottaviani C, Sheverdyaeva P M, Moras P, Carbone C, Topwal D, Olivieri B, Kara A, Oughaddou H, Aufray B and Le Lay G 2010 Appl. Phys. Lett. 96 261905 | Evidence of graphene-like electronic signature in silicene nanoribbons
[26] | Ding Y and Ni J 2009 Appl. Phys. Lett. 95 083115 | Electronic structures of silicon nanoribbons
[27] | Zberecki K, Swirkowicz R and Barnaś J 2014 Phys. Rev. B 89 165419 | Spin effects in thermoelectric properties of Al- and P-doped zigzag silicene nanoribbons
[28] | Fang D Q, Zhang S L and Xu H 2013 RSC Adv. 3 24075 | Tuning the electronic and magnetic properties of zigzag silicene nanoribbons by edge hydrogenation and doping
[29] | Zheng F B, Zhang C W, Yan S S and Li F 2013 J. Mater. Chem. C 1 2735 | Novel electronic and magnetic properties in N or B doped silicene nanoribbons
[30] | Zhang J M, Song W T, Xu K W and Ji V 2014 Comput. Mater. Sci. 95 429 | The study of the P doped silicene nanoribbons with first-principles
[31] | Chen A B, Wang X F, Vasilopoulos P, Zhai M X and Liu Y S 2014 Phys. Chem. Chem. Phys. 16 5113 | Spin-dependent ballistic transport properties and electronic structures of pristine and edge-doped zigzag silicene nanoribbons: large magnetoresistance
[32] | Houssa M, Pourtois G, Afanas'ev V V and Stesmans A 2010 Appl. Phys. Lett. 97 112106 | Can silicon behave like graphene? A first-principles study
[33] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 | Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
[34] | Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 | Generalized Gradient Approximation Made Simple