Structural, Optical and Luminescence Properties of ZnO Thin Films Prepared by Sol-Gel Spin-Coating Method: Effect of Precursor Concentration

  • Received Date: July 24, 2017
  • Published Date: December 31, 2017
  • Transparent zinc oxide (ZnO) thin films are fabricated by a simple sol-gel spin-coating technique on glass substrates with different solution concentrations (0.3–1.2 M) using zinc acetate dehydrate [Zn(CH3COO)22H2O] as precursor and isopropanol and monoethanolamine (MEA) as solvent and stabilizer, respectively. The molar ratio of zinc acetate dehydrate to MEA is 1.0. X-ray diffraction, ultraviolet-visible spectroscopy and photoluminescence spectroscopy are employed to investigate the effect of solution concentration on the structural and optical properties of the ZnO thin films. The obtained results of all thin films are discussed in detail and are compared with other experimental data.
  • Article Text

  • [1]
    Bhosle V, Prater J T, Yang F, Burk D, Forrest S R and Narayan J 2007 J. Appl. Phys. 102 023501 doi: 10.1063/1.2750410

    CrossRef Google Scholar

    [2]
    Shishiyanu S T, Shishiyanu T S and Lupan O I 2005 Sens. Actuators B 107 379 doi: 10.1016/j.snb.2004.10.030

    CrossRef Google Scholar

    [3]
    Maeda K, Takata T, Hara M, Saito N, Inoue Y, Kobayashi H and Domen K 2005 J. Am. Chem. Soc. 127 8286 doi: 10.1021/ja0518777

    CrossRef Google Scholar

    [4]
    Cao H T, Sun C, Pei Z L, Wang Y and Wen L S 2004 J. Mater. Sci.: Mater. Electron. 15 169 doi: 10.1023/B:JMSE.0000011357.32981.47

    CrossRef Google Scholar

    [5]
    Kim H, Horwitz J S, Kim W H, Mäkinen A J, Kafafi Z H and Chrisey D B 2002 Thin Solid Films 420–421 539 doi: 10.1016/S0040-60900200836-2

    CrossRef Google Scholar

    [6]
    Choi K, Kim J, Lee Y and Kim H 1999 Thin Solid Films 341 152 doi: 10.1016/S0040-60909801556-9

    CrossRef Google Scholar

    [7]
    Gaikwad R S, Jagdale S B and Pol P B 2014 Asian J. Multidiscip. Stud. 2 109

    Google Scholar

    [8]
    Prasada Rao T and Santhoshkumar M C 2009 Appl. Surf. Sci. 255 4579 doi: 10.1016/j.apsusc.2008.11.079

    CrossRef Google Scholar

    [9]
    Günster J, Görke R, Heinrich J G and Souda R 2001 Appl. Surf. Sci. 173 76 doi: 10.1016/S0169-43320000886-2

    CrossRef Google Scholar

    [10]
    Vishnoi S, Kumar R and Singh B P 2014 J. Intense Pulsed Lasers Appl. Adv. Phys. 4 35

    Google Scholar

    [11]
    Kato H, Sano M, Miyamoto K and Yao T 2003 Jpn. J. Appl. Phys. 42 L1002 doi: 10.1143/JJAP.42.L1002

    CrossRef Google Scholar

    [12]
    Menon R, Sreenivas K and Gupta V 2008 J. Appl. Phys. 103 094903 doi: 10.1063/1.2903531

    CrossRef Google Scholar

    [13]
    Pagni O, James G R and Leitch A W R 2004 Phys. Status Solidi C 1 864 doi: 10.1002/pssc.200304144

    CrossRef Google Scholar

    [14]
    Yamamoto Y, Saito K, Takahashi K and Konagai M 2001 Sol. Energy Mater. Sol. Cells 65 125 doi: 10.1016/S0927-02480000086-6

    CrossRef Google Scholar

    [15]
    Dutta M, Mridha S and Basak D 2008 Appl. Surf. Sci. 254 2743 doi: 10.1016/j.apsusc.2007.10.009

    CrossRef Google Scholar

    [16]
    Caglar Y, Caglar M and Ilican S 2012 Curr. Appl. Phys. 12 963 doi: 10.1016/j.cap.2011.12.017

    CrossRef Google Scholar

    [17]
    Xu L, Zheng G, Miao J and Xian F 2012 Appl. Surf. Sci. 258 7760 doi: 10.1016/j.apsusc.2012.04.137

    CrossRef Google Scholar

    [18]
    Kim Y and Leem J Y 2016 J. Nanosci. Nanotechnol. 16 5186 doi: 10.1166/jnn.2016.12267

    CrossRef Google Scholar

    [19]
    Baneto M, Enesca A, Lare Y, Jondo K, Napo K and Duta A 2014 Ceram. Int. 40 8397 doi: 10.1016/j.ceramint.2014.01.048

    CrossRef Google Scholar

    [20]
    Tazerout M, Chelouche A, Touam T, Djouadi D, Boudjouan F, Khodja S, Ouhenia S, Fischer A and Boudrioua A 2014 Eur. Phys. J. Appl. Phys. 67 10502 doi: 10.1051/epjap/2014140109

    CrossRef Google Scholar

    [21]
    Mahroug A, Boudjadar S, Hamrit S and Guerbous L 2014 J. Mater. Sci.: Mater. Electron. 25 4967 doi: 10.1007/s10854-014-2259-6

    CrossRef Google Scholar

    [22]
    Kim I, Kim Y, Nam G, Kim D, Park M, Kim H, Lee W and Leem J Y 2014 J. Korean Phys. Soc. 65 480 doi: 10.3938/jkps.65.480

    CrossRef Google Scholar

    [23]
    Saleem M M, Fang L, Ruan H B, Wu F, Huang Q L, Xu C L and Kong C Y 2012 Int. J. Phys. Sci. 7 2971

    Google Scholar

    [24]
    Lupan O, Chowb L, Shishiyanu S, Monaicoc E, Shishiyanu T, Sontea V, Roldan Cueny B, Naitabdi A, Park S and Schulte A 2009 Mater. Res. Bull. 44 63 doi: 10.1016/j.materresbull.2008.04.006

    CrossRef Google Scholar

    [25]
    Malek M F, Mamat M H, Sahdan M Z, Zahidi M M, Khusaimi Z and Mahmood M R 2013 Thin Solid Films 527 102 doi: 10.1016/j.tsf.2012.11.095

    CrossRef Google Scholar

    [26]
    Raoufi D and Raoufi T 2009 Appl. Surf. Sci. 255 5812 doi: 10.1016/j.apsusc.2009.01.010

    CrossRef Google Scholar

    [27]
    Mridha S and Basak D 2007 Mater. Res. Bull. 42 875 doi: 10.1016/j.materresbull.2006.08.019

    CrossRef Google Scholar

    [28]
    Brien S O, K Koh L H and Crean G M 2008 Thin Solid Films 516 1391 doi: 10.1016/j.tsf.2007.03.160

    CrossRef Google Scholar

    [29]
    Nagayasamy N, Gandhimathination S and Veerasamy V 2013 Open J. Metal 3 8 doi: 10.4236/ojmetal.2013.32A2002

    CrossRef Google Scholar

    [30]
    Liu J, Zhao X, Duan L, Cao M, Guan M and Guo W 2013 J. Mater. Sci.: Mater. Electron. 24 4932 doi: 10.1007/s10854-013-1500-z

    CrossRef Google Scholar

    [31]
    Lee G H, Yamamoto Y, Kourogi M and Ohtsu M 2001 Thin Solid Films 386 117 doi: 10.1016/S0040-60900100764-7

    CrossRef Google Scholar

    [32]
    Cheng T X W, Wu P and Zou X 2006 J. Appl. Phys. 100 54311 doi: 10.1063/1.2338601

    CrossRef Google Scholar

    [33]
    Zeng W P C B, Duan G T, Li Y, Yang S K and Xu X X 2010 Adv. Funct. Mater. 20 561 doi: 10.1002/adfm.200901884

    CrossRef Google Scholar

    [34]
    Gayen R N, Sarkar K, Hussain S, Bhar R and Pal K 2011 Indian J. Pure Appl. Phys. 49 470

    Google Scholar

    [35]
    Li Y, Xu L, Li X, Shen X and Wang A 2010 Appl. Surf. Sci. 256 4543 doi: 10.1016/j.apsusc.2010.02.044

    CrossRef Google Scholar

    [36]
    Chand P, Gaur A, Kumar A and Kumar U 2014 Ceram. Int. 40 11915 doi: 10.1016/j.ceramint.2014.04.027

    CrossRef Google Scholar

    [37]
    Zhang Q P W D H and Xue Z Y 2002 J. Phys. D 35 2837 doi: 10.1088/0022-3727/35/21/321

    CrossRef Google Scholar

    [38]
    Wei X Q, Man B Y, Liu M, Xue C S, Zhuang H Z and Yang C 2007 Physica B 388 145 doi: 10.1016/j.physb.2006.05.346

    CrossRef Google Scholar

    [39]
    Karthikeyan B and Pandiyarajan T 2010 J. Lumin. 130 2317 doi: 10.1016/j.jlumin.2010.07.011

    CrossRef Google Scholar

    [40]
    Petersen J, Brimont, Gallart M, Cregut O, Schmerber G, Gilliot P, Honerlage B, Bouillet C U, Rehspringer J L, Leuvrey C, Colis S, Slaoui A and Dinia A 2009 Microelectron. J. 40 239 doi: 10.1016/j.mejo.2008.07.061

    CrossRef Google Scholar

    [41]
    Sagar P, Shishodia P K, Mehra R M, Okada H, Wakahara A and Yoshida A 2007 J. Lumin. 126 800 doi: 10.1016/j.jlumin.2006.12.003

    CrossRef Google Scholar

    [42]
    Karmakar R, K Neogi S, Banerjee A and Bandyopadhyay S 2012 Appl. Surf. Sci. 263 671 doi: 10.1016/j.apsusc.2012.09.133

    CrossRef Google Scholar

    [43]
    Liu Y, Zhang H, An X, Gao C, Zhang Z and Zhou J 2010 J. Alloys Compd. 506 772 doi: 10.1016/j.jallcom.2010.07.067

    CrossRef Google Scholar

    [44]
    Djurisic A B, Ng A M C and Chen X Y 2010 Prog. Quantum Electron. 34 191 doi: 10.1016/j.pquantelec.2010.04.001

    CrossRef Google Scholar

  • Related Articles

    [1]Keyu Su, Yunfei Wang, Shanchao Zhang, Zhuoping Kong, Yi Zhong, Jianfeng Li, Hui Yan, Shi-Liang Zhu. Synchronization and Phase Shaping of Single Photons with High-Efficiency Quantum Memory [J]. Chin. Phys. Lett., 2021, 38(9): 094202. doi: 10.1088/0256-307X/38/9/094202
    [2]WANG Yan-Bin, HOU Jing, CHEN Zi-Lun, CHEN Sheng-Ping, SONG Rui, LI Ying, YANG Wei-Qiang, LU Qi-Sheng. High-Efficiency Supercontinuum Generation at 12.8W in an All-Fiber Device [J]. Chin. Phys. Lett., 2011, 28(7): 074208. doi: 10.1088/0256-307X/28/7/074208
    [3]YAN Hui, ZHU Shi-Liang, DU Sheng-Wang. Efficient Phase-Encoding Quantum Key Generation with Narrow-Band Single Photons [J]. Chin. Phys. Lett., 2011, 28(7): 070307. doi: 10.1088/0256-307X/28/7/070307
    [4]ZHU Zhen-Chao, ZHANG Yu-Qing. Cryptanalysis and Improvement of a Quantum Secret Sharing Protocol between Multiparty and Multiparty with Single Photons and Unitary Transformations [J]. Chin. Phys. Lett., 2010, 27(6): 060303. doi: 10.1088/0256-307X/27/6/060303
    [5]ZHONG Xian-Qiong, XIANG An-Ping. Generation of High-Repetition-Rate Pulse Trains through the Continuous-Wave Perturbed by a Weak Gaussian Pulse in an Optical Fiber [J]. Chin. Phys. Lett., 2010, 27(1): 014203. doi: 10.1088/0256-307X/27/1/014203
    [6]LIN Song, WEN Qiao-Yan, LIU Xiao-Fen. Cryptanalysis and Improvement of Quantum Secret Sharing Protocol between Multiparty and Multiparty with Single Photons and Unitary Transformations [J]. Chin. Phys. Lett., 2009, 26(12): 120307. doi: 10.1088/0256-307X/26/12/120307
    [7]DU Gui-Qiang, JIANG Hai-tao, LI Hong-Qiang, ZHANG Ye-Wen, CHEN Hong. High-Efficiency Bistable Switching Based on One-Dimensional Photonic Crystals with Single-Negative Materials [J]. Chin. Phys. Lett., 2008, 25(8): 2900-2903.
    [8]YAN Feng-Li, GAO Ting, LI You-Cheng. Quantum Secret Sharing Protocol between Multiparty and Multiparty with Single Photons and Unitary Transformations [J]. Chin. Phys. Lett., 2008, 25(4): 1187-1190.
    [9]HOU Ping, LI Xi-Han, DENG Fu-Guo, ZHOU Hong-Yu. Efficient Three-Party Quantum Secret Sharing with Single Photons [J]. Chin. Phys. Lett., 2007, 24(8): 2181-2184.
    [10]ZHENG Zhi-Yuan, ZHANG Yi, ZHOU Wei-Gong, LU Xin, LI Yu-Tong, ZHANG Jie. High Coupling Efficiency Generation in Water Confined Laser Plasma Propulsion [J]. Chin. Phys. Lett., 2007, 24(2): 501-503.

Catalog

    Article views (247) PDF downloads (1729) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return