[1] | Haines J, Léger J M and Bocquillon G 2001 Annu. Rev. Mater. Res. 31 1 | Synthesis and Design of Superhard Materials
[2] | Occelli F, Farber D L and Toullec R L 2003 Nat. Mater. 2 151 | Properties of diamond under hydrostatic pressures up to 140 GPa
[3] | Zheng J C 2005 Phys. Rev. B 72 052105 | Superhard hexagonal transition metal and its carbide and nitride: Os, OsC, and OsN
[4] | Solozhenko V L, Dub S N and Novikov N V 2001 Diamond Relat. Mater. 10 2228 | Mechanical properties of cubic BC2N, a new superhard phase
[5] | Jonathan B L, Sarah H T and Richard B K 2009 Adv. Funct. Mater. 19 3519 | Advancements in the Search for Superhard Ultra-Incompressible Metal Borides
[6] | Ivanovskii A L 2012 Prog. Mater. Sci. 57 184 | Mechanical and electronic properties of diborides of transition 3d–5d metals from first principles: Toward search of novel ultra-incompressible and superhard materials
[7] | Cumberland R W, Weinberger M B, Gilman J J, Clark S M, Tolbert S H and Kaner R B 2005 J. Am. Chem. Soc. 127 7264 | Osmium Diboride, An Ultra-Incompressible, Hard Material
[8] | Hao X F, Xu Y H, Xu Zh J, Zhou D F, Liu X J, Cao X Q and Meng J 2006 Phys. Rev. B 74 224112 | Low-compressibility and hard materials and : Prediction from first-principles study
[9] | Chuang H Y, Weinberger M B, Yang J M, Tolbert S H and Kaner R B 2008 Appl. Phys. Lett. 92 261904 | Correlation between hardness and elastic moduli of the ultraincompressible transition metal diborides RuB2, OsB2, and ReB2
[10] | Zhao Z S, Wang M, Cui L, He J L, Yu D L and Tian Y J 2010 J. Phys. Chem. C 114 9961 | Semiconducting Superhard Ruthenium Monocarbide
[11] | Chung H Y, Weinberger M B, Levine J B, Kavner A, Yang J M, Tolbert S H and Kaner R B 2007 Science 316 436 | Synthesis of Ultra-Incompressible Superhard Rhenium Diboride at Ambient Pressure
[12] | Zhang R F, Legut D, Lin Z J, Zhao Y S, Mao H K and Veprek S 2012 Phys. Rev. Lett. 108 255502 | Stability and Strength of Transition-Metal Tetraborides and Triborides
[13] | Tse J S, Klug D D, Uehara K, Li Z Q, Haines J and Leger J M 2000 Phys. Rev. B 61 10029 | Elastic properties of potential superhard phases of
[14] | Wang Q Q, Zhao Zh Sh, Xu L F, Wang L M, Yu D L, Tian Y J and He J L 2011 J. Phys. Chem. C 115 19910 | Novel High-Pressure Phase of RhB: First-Principles Calculations
[15] | Mooney R W and Welch A J E 1954 Acta Crystallogr. 7 49 | The crystal structure of Rh 2 B
[16] | Rau J V and Latini A 2009 Chem. Mater. 21 1407 | New Hard and Superhard Materials: RhB 1.1 and IrB 1.35
[17] | Latini A, Rau J V, Teghil R, Generosi A and Albertini V R 2010 ACS Appl. Mater. Interfaces 2 581 | Superhard Properties of Rhodium and Iridium Boride Films
[18] | Oganov A R and Glass C W 2006 J. Chem. Phys. 124 244704 | Crystal structure prediction using ab initio evolutionary techniques: Principles and applications
[19] | Oganov A R, Lyakhov A O and Valle M 2011 Acc. Chem. Res. 44 227 | How Evolutionary Crystal Structure Prediction Works—and Why
[20] | Lyakhov A O, Oganov A R, Stokes H T and Zhu Q 2013 Comput. Phys. Commun. 184 1172 | New developments in evolutionary structure prediction algorithm USPEX
[21] | Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244 | Accurate and simple analytic representation of the electron-gas correlation energy
[22] | Kresse G and Hafner J 1993 Phys. Rev. B 47 558 | Ab initio molecular dynamics for liquid metals
[23] | Kresse G and Hafner J 1994 J. Phys.: Condens. Matter 6 8245 | Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements
[24] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 | Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
[25] | Segall M D, Lindan P L D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Condens. Matter 14 2717 | First-principles simulation: ideas, illustrations and the CASTEP code
[26] | Hill R 1952 Proc. Phys. Soc. A 65 349 | The Elastic Behaviour of a Crystalline Aggregate
[27] | Parlinski K Computer Code PHONON http://wolf.ifj.edu.pl/phonon/ |
[28] | Oganov A R, Chen J H, Gatti C L, Ma Y M, Glass C W, Liu Z X, Yu T, Kurakevych O O and Solozhenko V L 2009 Nature 457 863 | Ionic high-pressure form of elemental boron
[29] | Wang M, Li Y W, Cui T, Ma Y M and Zou G T 2008 Appl. Phys. Lett. 93 101905 | Origin of hardness in WB4 and its implications for ReB4, TaB4, MoB4, TcB4, and OsB4
[30] | Gou H Y, Li Z P, Niu H, Gao F M, Zhang J W, Ewing R C and Lian J 2012 Appl. Phys. Lett. 100 111907 | Unusual rigidity and ideal strength of CrB 4 and MnB 4
[31] | Zhang M G, Yan H Y, Zhang G T and Wang H 2012 J. Phys. Chem. C 116 4293 | Ultra-incompressible Orthorhombic Phase of Osmium Tetraboride (OsB 4 ) Predicted from First Principles
[32] | Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J and Meng J 2007 Phys. Rev. B 76 054115 | Crystal structures and elastic properties of superhard and from first principles
[33] | Romans P A and Krug M P 1966 Acta Crystallogr. 20 313 | Composition and crystallographic data for the highest boride of tungsten
[34] | Zhang M G, Wang H, Wang H B, Cui T and Ma Y M 2010 J. Phys. Chem. C 114 6722 | Structural Modifications and Mechanical Properties of Molybdenum Borides from First Principles
[35] | Haines J, Leger J M and Bocquillon G 2001 Annu. Rev. Mater. Res. 31 1 | Synthesis and Design of Superhard Materials