[1] | Nakamura H 2012 Nonadiabatic Transitions: Concepts, Basic Theories and Applications (Singapore: World Scientific) |
[2] | Nitzan A 2006 Chemical Dynamics in Condensed Phases (Oxford: Oxford University Press) |
[3] | Landau L D 1932 Phys. Z. Sowjetunion 2 46 |
[4] | Zener C 1932 Proc. R. Soc. A 137 696 | Non-Adiabatic Crossing of Energy Levels
[5] | Demkov Y N and Osherov V I 1967 Zh. Exp. Teor. Fiz. 53 1589 |
[6] | Brundobler S and Elser V 1993 J. Phys. A 26 1211 | S-matrix for generalized Landau-Zener problem
[7] | Ostrovsky V N and Nakamura H 1997 J. Phys. A 30 6939 | Exact analytical solution of the N -level Landau - Zener-type bow-tie model
[8] | Demkov Y N and Ostrovsky V N 2000 Phys. Rev. A 61 032705 | Multipath interference in a multistate Landau-Zener-type model
[9] | Rangelov A A, Piilo J and Vitanov N V 2005 Phys. Rev. A 72 053404 | Counterintuitive transitions between crossing energy levels
[10] | Sinitsyn N A 2015 J. Phys. A 48 195305 | Exact transition probabilities in a 6-state Landau–Zener system with path interference
[11] | Patra A and Yuzbashyan E A 2015 J. Phys. A 48 245303 | Quantum integrability in the multistate Landau–Zener problem
[12] | Bharucha C F et al 1997 Phys. Rev. A 55 R857 | Observation of atomic tunneling from an accelerating optical potential
[13] | Saito K et al 2006 Europhys. Lett. 76 22 | Quantum state preparation in circuit QED via Landau-Zener tunneling
[14] | Guerin S et al 2011 Phys. Rev. A 84 013423 | Optimal adiabatic passage by shaped pulses: Efficiency and robustness
[15] | Malossi N et al 2013 Phys. Rev. A 87 012116 | Quantum driving protocols for a two-level system: From generalized Landau-Zener sweeps to transitionless control
[16] | Sinitsyn N A 2002 Phys. Rev. B 66 205303 | Multiparticle Landau-Zener problem: Application to quantum dots
[17] | Saito K and Kayanuma Y 2004 Phys. Rev. B 70 201304 | Nonadiabatic electron manipulation in quantum dot arrays
[18] | Cao G et al 2013 Nat. Commun. 4 1401 | Ultrafast universal quantum control of a quantum-dot charge qubit using Landau–Zener–Stückelberg interference
[19] | Oliver W D et al 2005 Science 310 1653 | Mach-Zehnder Interferometry in a Strongly Driven Superconducting Qubit
[20] | Berns D M et al 2006 Phys. Rev. Lett. 97 150502 | Coherent Quasiclassical Dynamics of a Persistent Current Qubit
[21] | Sillanpää M et al 2006 Phys. Rev. Lett. 96 187002 | Continuous-Time Monitoring of Landau-Zener Interference in a Cooper-Pair Box
[22] | Quintana C M et al 2013 Phys. Rev. Lett. 110 173603 | Cavity-Mediated Entanglement Generation Via Landau-Zener Interferometry
[23] | Boscain U et al 2002 J. Math. Phys. 43 2107 | Optimal control in laser-induced population transfer for two- and three-level quantum systems
[24] | Hicke C et al 2006 Phys. Rev. A 73 012342 | Fault-tolerant Landau-Zener quantum gates
[25] | Torosov B T et al 2011 Phys. Rev. Lett. 106 233001 | High-Fidelity Adiabatic Passage by Composite Sequences of Chirped Pulses
[26] | Demirplak M and Rice S A 2003 J. Phys. Chem. A 107 9937 | Adiabatic Population Transfer with Control Fields
[27] | Demirplak M and Rice S A 2008 J. Chem. Phys. 129 154111 | On the consistency, extremal, and global properties of counterdiabatic fields
[28] | Zhang J et al 2013 Phys. Rev. Lett. 110 240501 | Experimental Implementation of Assisted Quantum Adiabatic Passage in a Single Spin
[29] | Sun Z et al 2016 Phys. Rev. A 93 012121 | Finite-time Landau-Zener processes and counterdiabatic driving in open systems: Beyond Born, Markov, and rotating-wave approximations
[30] | The same idea that makes use of an additional interaction to eliminate the nonadiabatic effect has ever been exploited in the scheme of the holonomic quantum computation, see Ref. [36] |
[31] | Berry M V 2009 J. Phys. A 42 365303 | Transitionless quantum driving
[32] | Chen X et al 2010 Phys. Rev. Lett. 105 123003 | Shortcut to Adiabatic Passage in Two- and Three-Level Atoms
[33] | Martínez-Garaot S et al 2014 Phys. Rev. A 89 053408 | Shortcuts to adiabaticity in three-level systems using Lie transforms
[34] | Wang S J 1990 Phys. Rev. A 42 5107 | Nonadiabatic Berry’s phase for a spin particle in a rotating magnetic field
[35] | Wang S J et al 1993 Phys. Lett. A 180 189 | Algebraic dynamics and time-dependent dynamical symmetry of nonautonomous systems
[36] | Cen L X et al 2003 Phys. Rev. Lett. 90 147902 | Evaluation of Holonomic Quantum Computation: Adiabatic Versus Nonadiabatic
[37] | Bason M G et al 2012 Nat. Phys. 8 147 | High-fidelity quantum driving