BH$_{2}$ | HBF | HBCl | HBBr | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Our | Exp. | Theory | Our | Exp. | Theory | Our | Exp. | Theory | Our | Exp. | Theory | |
$\tilde {X}$ state | ||||||||||||
$R_{\rm B-H}$ (Å) | 1.189 | 1.197$^{\rm a}$ | 1.184$^{\rm a}$ | 1.199 | 1.214$^{\rm b}$ | 1.203$^{\rm c}$ | 1.190 | 1.191$^{\rm d}$ | 1.189 | 1.186$^{\rm e}$ | ||
$R_{\rm B-X}$ (Å) | 1.189 | 1.197$^{\rm a}$ | 1.184$^{\rm a}$ | 1.303 | 1.303$^{\rm b}$ | 1.309$^{\rm c}$ | 1.720 | 1.724$^{\rm d}$ | 1.880 | 1.863$^{\rm e}$ | ||
$\angle $H–B–$X$ (deg) | 128.9 | 129.6$^{\rm a}$ | 129.1$^{\rm a}$ | 121.0 | 120.7$^{\rm b}$ | 121.1$^{\rm c}$ | 123.6 | 123.3$^{\rm d}$ | 123.7 | 123.5$^{\rm e}$ | ||
$\omega_{1}$ | 2506.7 | 2508.1$^{\rm a}$ | 1012.1 | 1002.8$^{\rm b}$ | 1008.0$^{\rm c}$ | 844.6 | 836$^{\rm b}$ | 842$^{\rm d}$ | 719.3 | 725$^{\rm e}$ | ||
$\omega_{2}$ | 974.6 | 972.9$^{\rm a}$ | 1325.6 | 1319.4$^{\rm b}$ | 1320.1$^{\rm c}$ | 914.1 | 894$^{\rm b}$ | 909$^{\rm d}$ | 834.7 | 834$^{\rm b}$ | 845$^{\rm e}$ | |
$\omega_{3}$ | 2657.3 | 2658.4$^{\rm a}$ | 2557.4 | 2432.8$^{\rm b}$ | 2541.0$^{\rm c}$ | 2649.5 | 2641$^{\rm d}$ | 2654.3 | 2656$^{\rm e}$ | |||
$\tilde {A}$ state | ||||||||||||
$R_{\rm B-H}$ (Å) | 1.170 | 1.167$^{\rm a}$ | 1.164 | 1.167$^{\rm c}$ | 1.166 | 1.167$^{\rm d}$ | 1.168 | 1.166$^{\rm e}$ | ||||
$R_{{\rm B}-X}$ (Å) | 1.170 | 1.167$^{\rm a}$ | 1.307 | 1.307$^{\rm c}$ | 1.680 | 1.690$^{\rm d}$ | 1.835 | 1.824$^{\rm e}$ | ||||
$\angle $H–B–$X$ (deg) | 180.0 | 180.0$^{\rm a}$ | 180.0 | 180.0$^{\rm c}$ | 180.0 | 180.0$^{\rm d}$ | 180.0 | 180.0$^{\rm e}$ | ||||
$\omega_{1}$ | 2590.3 | 2592.1$^{\rm a}$ | 1306.3 | 1313.1$^{\rm c}$ | 928.5 | 926$^{\rm d}$ | 790.0 | 791$^{\rm e}$ | ||||
$\omega_{2}$ | 951.2 | 953.0$^{\rm a}$ | 699.5 | 702.4$^{\rm c}$ | 682.7 | 682$^{\rm d}$ | 674.3 | 674$^{\rm e}$ | ||||
$\omega_{3}$ | 2825.2 | 2829.0$^{\rm a}$ | 2890.9 | 2890.6$^{\rm c}$ | 2859.5 | 2861$^{\rm d}$ | 2843.0 | 2845$^{\rm e}$ | ||||
$T_{\rm e}$ (cm$^{-1}$) | 2790.08 | 2743$^{\rm e}$ | 10433.9 | 10084$^{\rm e}$ | 6143.21 | 6073$^{\rm e}$ | 5549.99 | 5607$^{\rm e}$ | ||||
$^{\rm a}$Ref. [ |
icMRCI+Q/aug-cc-pVTZ | icMRCI+Q/aug-cc-pVQZ | icMRCI+Q/aug-cc-pV5Z | |
---|---|---|---|
$\tilde {X}$ state | |||
$R_{\rm B-H}$ (Å) | 1.1897 | 1.1882 | 1.1876 |
$\angle $H–B–H (deg) | 128.925 | 128.948 | 128.953 |
$\omega_{1}$ | 2506.7 | 2532.2 | 2549.6 |
$\omega_{2}$ | 974.6 | 972.3 | 971.6 |
$\omega_{3}$ | 2567.3 | 2584.3 | 2593.9 |
$\tilde {A}$ state | |||
$R_{\rm B-H}$ (Å) | 1.1722 | 1.1708 | 1.1701 |
$\angle $H–B–H (deg) | 180.0 | 180.0 | 180.0 |
$\omega_{1}$ | 2590.3 | 2596.4 | 2600.2 |
$\omega_{2}$ | 951.2 | 949.3 | 950.2 |
$\omega_{3}$ | 2825.2 | 2829.6 | 2830.2 |
Radicals | VTE (eV) | Configuration | |
---|---|---|---|
$\tilde {X}$ state | BH$_{2}$ | 0 | $(2-3 a')^{2}(4a')^{1}$ |
HBF | 0 | $(3-5a')^{2}(1a'')^{2}(6a')^{2}(7a')^{1}$ | |
HBCl | 0 | $(6-8a')^{2}(2a'')^{2}(9a')^{2}(10a')^{1}$ | |
HBBr | 0 | $(12-14a')^{2}(5a'')^{2}(15a')^{2}(16a')^{1}$ | |
$\tilde {A}$ state | BH$_{2}$ | 1.172 | $(2-3 a')^{2}(1a'')^{1}$ |
HBF | 2.290 | $(3-5a')^{2}(1a'')^{2}(6a')^{2}(7a')^{0}(2a'')^{1}$ | |
HBCl | 1.712 | $(6-8a')^{2}(2a'')^{2}(9a')^{2}(10a')^{0}(3a'')^{1}$ | |
HBBr | 1.592 | $(12-14a')^{2}(5a'')^{2}(15a')^{2}(16a')^{0}(6a'')^{1}$ |
[1] | He S G, Sunahori F X and Clouthier D J 2005 J. Am. Chem. Soc. 127 10814 | A Family of New Boron-Containing Free Radicals
[2] | Sunahori F X, Clouthier D J, Carter S and Tarroni R 2009 J. Chem. Phys. 130 164309 | The electronic spectrum of the fluoroborane free radical. I. Theoretical calculation of the vibronic energy levels of the ground and first excited electronic states
[3] | Sunahori F X and Clouthier D J 2009 J. Chem. Phys. 130 164310 | The electronic spectrum of the fluoroborane free radical. II. Analysis of laser-induced fluorescence and single vibronic level emission spectra
[4] | Gharaibeh M, Clouthier D J and Tarroni R 2015 J. Chem. Phys. 142 014305 | An experimental and theoretical study of the electronic spectrum of the HBCl free radical
[5] | Gharaibeh M, Clouthier D J and Tarroni R 2016 J. Chem. Phys. 144 234309 | An experimental and theoretical study of the Ã2A″Π–X̃2A′ band system of the jet-cooled HBBr/DBBr free radical
[6] | Sunahori F X, Gharaibeh M and Clouthier D J 2015 J. Chem. Phys. 142 174302 | BH 2 revisited: New, extensive measurements of laser-induced fluorescence transitions and ab initio calculations of near-spectroscopic accuracy
[7] | Werner H J, Knowles P J, Manby F R et al 2012 Molpro, version 2012. 1 a package of ab initio programs see http://www.molpro.net |
[8] | Werner H J and Knowles P J 1988 J. Chem. Phys. 89 5803 | An efficient internally contracted multiconfiguration–reference configuration interaction method
[9] | Knowles P J and Werner H J 1988 Chem. Phys. Lett. 145 514 | An efficient method for the evaluation of coupling coefficients in configuration interaction calculations
[10] | Werner H J and Knowles P J 1985 J. Chem. Phys. 82 5053 | A second order multiconfiguration SCF procedure with optimum convergence
[11] | Knowles P J and Werner H J 1985 Chem. Phys. Lett. 115 259 | An efficient second-order MC SCF method for long configuration expansions
[12] | Langhoff S R and Davidson E R 1974 Int. J. Quantum Chem. 8 61 | Configuration interaction calculations on the nitrogen molecule
[13] | Kendall R A, Dunning Jr T H and Harrison R J 1992 J. Chem. Phys. 96 6796 | Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions
[14] | Balabanov N B and Peterson K A 2005 J. Chem. Phys. 123 064107 | Systematically convergent basis sets for transition metals. I. All-electron correlation consistent basis sets for the 3d elements Sc–Zn
[15] | Dunning T H, Peterson Jr K A and Wilson A K 2001 J. Chem. Phys. 114 9244 | Gaussian basis sets for use in correlated molecular calculations. X. The atoms aluminum through argon revisited
[16] | Peterson K A, Flowers B A and Francisco J S 2001 J. Chem. Phys. 115 7513 | Accurate ab initio spectroscopic and thermodynamic properties of BBrx and HBBrx (x=0, +1, −1)