[1] | Kupershmidt B A 2001 J. Nonlinear Math. Phys. 8 363 | Dark Equations
[2] | Qiao Z J 2001 Rev. Math. Phys. 13 545 | GENERALIZED r-MATRIX STRUCTURE AND ALGEBRO-GEOMETRIC SOLUTION FOR INTEGRABLE SYSTEM
[3] | Magri F 1978 J. Math. Phys. 19 1156 | A simple model of the integrable Hamiltonian equation
[4] | Xiong N, Lou S Y, Li B and Chen Y 2017 Commun. Theor. Phys. 68 13 | Classification of Dark Modified KdV Equation
[5] | Liu X J, Liu R L and Zeng Y B 2008 Phys. Lett. A 372 3819 | A new extended KP hierarchy
[6] | Liu Q P, Hu X B and Zhang M X 2005 Nonlinearity 18 1597 | Supersymmetric modified Korteweg–de Vries equation: bilinear approach
[7] | Olver P J 1977 J. Math. Phys. 18 1212 | Evolution equations possessing infinitely many symmetries
[8] | Gudkov V V 1997 J. Math. Phys. 38 4794 | A family of exact travelling wave solutions to nonlinear evolution and wave equations
[9] | Wang S, Tang X Y and Lou S Y 2004 Chaos Solitons Fractals 21 231 | Soliton fission and fusion: Burgers equation and Sharma–Tasso–Olver equation
[10] | Hon Y C and Fan E 2005 Chaos Solitons Fractals 24 1087 | Uniformly constructing finite-band solutions for a family of derivative nonlinear Schrödinger equations
[11] | Inan I E K D 2007 Physica A 381 104 | Exact solutions of some nonlinear partial differential equations
[12] | Huang W L and Cai J L 2011 Chin. Phys. Lett. 28 110203 | Conformal Invariance of Higher-Order Lagrange Systems by Lie Point Transformation
[13] | Yao B W and Lou S Y 2012 Chin. Ann. Math. Ser. B 33 271 | Fermionization of Sharma-Tasso-Olver system
[14] | Olver P J 1986 Applications of Lie Groups to Differential Equations (Berlin: Springer) |
[15] | Hu X Z and Chen Y 2015 Chin. Phys. B 24 090203 | Nonlocal symmetries, consistent Riccati expansion integrability, and their applications of the (2+1)-dimensional Broer–Kaup–Kupershmidt system
[16] | Yao R X and Lou S Y 2008 Chin. Phys. Lett. 25 1927 | A Maple Package to Compute Lie Symmetry Groups and Symmetry Reductions of (1+1)-Dimensional Nonlinear Systems
[17] | Liu Y K and Li B 2017 Chin. Phys. Lett. 34 010202 | Rogue Waves in the (2+1)-Dimensional Nonlinear Schrödinger Equation with a Parity-Time-Symmetric Potential
[18] | Ren B, Yang J R, Zeng B Q and Liu P 2015 Chin. Phys. B 24 010202 | Exact solutions and residual symmetries of the Ablowitz–Kaup–Newell–Segur system
[19] | Li Y Q, Chen J Q, Chen Y and Lou S Y 2014 Chin. Phys. Lett. 31 010201 | Darboux Transformations via Lie Point Symmetries: KdV Equation
[20] | Fordy A P and Gibbons J 1980 J. Math. Phys. 21 2508 | Factorization of operators I. Miura transformations
[21] | Fokas A S and Anderson R L 1982 J. Math. Phys. 23 1066 | On the use of isospectral eigenvalue problems for obtaining hereditary symmetries for Hamiltonian systems
[22] | Fokas A S 1987 Stud. Appl. Math. 77 253 | Scattering and inverse scattering for first order systems
[23] | Santini P M and Fokas A S 1988 Commun. Math. Phys. 115 375 | Recursion operators and bi-Hamiltonian structures in multidimensions. I
[24] | Fokas A S and Santini P M 1988 Commun. Math. Phys. 116 449 | Recursion operators and bi-Hamiltonian structures in multidimensions. II
[25] | Qiao Z J 2006 J. Math. Phys. 47 112701 | A new integrable equation with cuspons and W/M-shape-peaks solitons
[26] | Qiao Z J 2007 J. Math. Phys. 48 082701 | New integrable hierarchy, its parametric solutions, cuspons, one-peak solitons, and M/W-shape peak solitons
[27] | Qiao Z J 2003 Commun. Math. Phys. 239 309 | The Camassa-Holm Hierarchy, N -Dimensional Integrable Systems, and Algebro-Geometric Solution on a Symplectic Submanifold
[28] | Cao C W 1989 Sci. Chin. A 7 701 |
[29] | Cao C W 1989 Chin. Sci. Bull. 34 1331 |
[30] | Symes W 1979 J. Math. Phys. 20 721 | Relations among generalized Korteweg–deVries systems
[31] | Adler M 1978 Invent. Math. 50 219 | On a trace functional for formal pseudo-differential operators and the symplectic structure of the Korteweg-devries type equations
[32] | Fu W and Zhang D J 2013 Chin. Phys. Lett. 30 080201 | The Hamiltonian Structures of μ-Equations Related to Periodic Peakons
[33] | Cai L Q, Wang L F, Wu K and Yang J 2013 Chin. Phys. Lett. 30 020306 | Operator Product Formulas in the Algebraic Approach of the Refined Topological Vertex
[34] | Gurses M, Karasu A and Sokolov V V 1999 J. Math. Phys. 40 6473 | On construction of recursion operators from Lax representation
[35] | Fokas A S and Fuchssteiner B 1981 Nonlinear Anal.: Theory Methods Appl. 5 423 | Bäcklund transformations for hereditary symmetries
[36] | Fuchssteiner B 1979 Nonlinear Anal.: Theory Methods Appl. 3 849 | Application of hereditary symmetries to nonlinear evolution equations