[1] | Ali M N et al 2014 Nature 514 205 | Large, non-saturating magnetoresistance in WTe2
[2] | Soluyanov A A et al 2015 Nature 527 495 | Type-II Weyl semimetals
[3] | Bruno F Y et al 2016 Phys. Rev. B 94 121112(R) | Observation of large topologically trivial Fermi arcs in the candidate type-II Weyl semimetal
[4] | Wang C L et al 2016 Phys. Rev. B 94 241119(R) | Observation of Fermi arc and its connection with bulk states in the candidate type-II Weyl semimetal
[5] | Wu Y et al 2016 Phys. Rev. B 94 121113(R) | Observation of Fermi arcs in the type-II Weyl semimetal candidate
[6] | Sanchez B J et al 2016 Phys. Rev. B 94 161401(R) | Surface Fermi arc connectivity in the type-II Weyl semimetal candidate
[7] | Kang D F et al 2015 Nat. Commun. 6 7804 | Superconductivity emerging from a suppressed large magnetoresistant state in tungsten ditelluride
[8] | Pan X C et al 2015 Nat. Commun. 6 7805 | Pressure-driven dome-shaped superconductivity and electronic structural evolution in tungsten ditelluride
[9] | Jia Z Y et al 2017 Phys. Rev. B 96 041108 | Direct visualization of a two-dimensional topological insulator in the single-layer
[10] | Das P K et al 2016 Nat. Commun. 7 10847 | Layer-dependent quantum cooperation of electron and hole states in the anomalous semimetal WTe2
[11] | Feng B J et al 2016 Phys. Rev. B 94 195134 | Spin texture in type-II Weyl semimetal
[12] | Wu Y et al 2015 Phys. Rev. Lett. 115 166602 | Temperature-Induced Lifshitz Transition in
[13] | Homes C C et al 2015 Phys. Rev. B 92 161109(R) | Optical properties of the perfectly compensated semimetal
[14] | Qian X F et al 2014 Science 346 1344 | Quantum spin Hall effect in two-dimensional transition metal dichalcogenides
[15] | Zheng F P et al 2016 Adv. Mater. 28 4845 | On the Quantum Spin Hall Gap of Monolayer 1Tâ²-WTe 2
[16] | Jiang J et al 2015 Phys. Rev. Lett. 115 166601 | Signature of Strong Spin-Orbital Coupling in the Large Nonsaturating Magnetoresistance Material
[17] | Lv Y Y et al 2016 Sci. Rep. 6 26903 | Dramatically decreased magnetoresistance in non-stoichiometric WTe2 crystals
[18] | Rhodes D et al 2015 Phys. Rev. B 92 125152 | Role of spin-orbit coupling and evolution of the electronic structure of under an external magnetic field
[19] | Luo Y K et al 2015 Appl. Phys. Lett. 107 182411 | Hall effect in the extremely large magnetoresistance semimetal WTe 2
[20] | Flynn S et al 2015 arXiv:1506.07069 [cond-mat.mtrl-sci] | The Effect of Dopants on the Magnetoresistance of WTe2
[21] | Wang Y L et al 2016 Phys. Rev. B 93 121108 | Breakdown of compensation and persistence of nonsaturating magnetoresistance in gated thin flakes
[22] | Pletikosić I et al 2014 Phys. Rev. Lett. 113 216601 | Electronic Structure Basis for the Extraordinary Magnetoresistance in
[23] | Lv H Y et al 2015 Europhys. Lett. 110 37004 | Perfect charge compensation in WTe 2 for the extraordinary magnetoresistance: From bulk to monolayer
[24] | Zhu Z W et al 2015 Phys. Rev. Lett. 114 176601 | Quantum Oscillations, Thermoelectric Coefficients, and the Fermi Surface of Semimetallic
[25] | Xiang F X et al 2015 Europhys. Lett. 112 37009 | Multiple Fermi pockets revealed by Shubnikov-de Haas oscillations in WTe 2
[26] | Cai P L et al 2015 Phys. Rev. Lett. 115 057202 | Drastic Pressure Effect on the Extremely Large Magnetoresistance in : Quantum Oscillation Study
[27] | Wu Y et al 2017 Phys. Rev. B 95 195138 | Three-dimensionality of the bulk electronic structure in