[1] | Jeon N J et al 2014 Nat. Mater. 13 897 | Solvent engineering for high-performance inorganicâorganic hybrid perovskite solar cells
[2] | Jeon N J et al 2014 J. Am. Chem. Soc. 136 7837 | o -Methoxy Substituents in Spiro-OMeTAD for Efficient InorganicâOrganic Hybrid Perovskite Solar Cells
[3] | Jeon N J, Noh J H, Yang W S et al 2015 Nature 517 476 | Compositional engineering of perovskite materials for high-performance solar cells
[4] | Yang W S, Noh J H, Jeon N J et al 2015 Science 348 1234 | High-performance photovoltaic perovskite layers fabricated through intramolecular exchange
[5] | Deschler F, Price M, Pathak S et al 2014 J. Phys. Chem. Lett. 5 1421 | High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors
[6] | Tan Z K, Moghaddam R S, Lai M L et al 2014 Nat. Nanotechnol. 9 687 | Bright light-emitting diodes based on organometal halide perovskite
[7] | Xing G, Mathews N, Lim S S et al 2014 Nat. Mater. 13 476 | Low-temperature solution-processed wavelength-tunable perovskites for lasing
[8] | Zhang Q, Ha S T, Liu X et al 2014 Nano Lett. 14 5995 | Room-Temperature Near-Infrared High-Q Perovskite Whispering-Gallery Planar Nanolasers
[9] | Xing J, Liu X F, Zhang Q et al 2015 Nano Lett. 15 4571 | Vapor Phase Synthesis of Organometal Halide Perovskite Nanowires for Tunable Room-Temperature Nanolasers
[10] | Birbarah P, Li Z, Pauls A et al 2015 Langmuir 31 7885 | A Comprehensive Model of Electric-Field-Enhanced Jumping-Droplet Condensation on Superhydrophobic Surfaces
[11] | Berini P 2014 Laser Photon. Rev. 8 197 | Surface plasmon photodetectors and their applications
[12] | Alavirad M, Roy L and Berini P 2016 J. Photon. for Energy 6 042511 | Surface plasmon enhanced photodetectors based on internal photoemission
[13] | Jung Y U, Liu M, Bendoym I et al 2014 Systems, Applications and Technology (LISAT) p 1 |
[14] | Sardana S K, Chava V S N, Thouti E et al 2014 Appl. Phys. Lett. 104 073903 | Influence of surface plasmon resonances of silver nanoparticles on optical and electrical properties of textured silicon solar cell
[15] | Luo L B, Xie C, Wang X H et al 2014 Nano Energy 9 112 | Surface plasmon resonance enhanced highly efficient planar silicon solar cell
[16] | Zhang W, Saliba M, Stanks S D et al 2013 Nano Lett. 13 4505 | Enhancement of Perovskite-Based Solar Cells Employing Core–Shell Metal Nanoparticles
[17] | Cui J, Chen C, Han J et al 2016 Adv. Sci. 3 1500312 | Surface Plasmon Resonance Effect in Inverted Perovskite Solar Cells
[18] | Xiao M, Huang F, Huang W et al 2014 Angew. Chem. 126 10056 | A Fast Deposition-Crystallization Procedure for Highly Efficient Lead Iodide Perovskite Thin-Film Solar Cells
[19] | Hou Y, Zhang H, Chen W et al 2015 Adv. Energy Mater. 5 1500543 | Inverted, Environmentally Stable Perovskite Solar Cell with a Novel Low-Cost and Water-Free PEDOT Hole-Extraction Layer
[20] | Fort E and Grésillon S 2008 J. Phys. D 41 013001 | Surface enhanced fluorescence
[21] | Lai C W, An J and Ong H C 2005 Appl. Phys. Lett. 86 251105 | Surface-plasmon-mediated emission from metal-capped ZnO thin films
[22] | Ni W H, An J, Lai C W et al 2006 J. Appl. Phys. 100 026103 | Emission enhancement from metallodielectric-capped ZnO films
[23] | Lei D Y, Li J and Ong H C 2007 Appl. Phys. Lett. 91 021112 | Tunable surface plasmon mediated emission from semiconductors by using metal alloys
[24] | McPeak K M, Jayanti S V, Kress S J P et al 2015 ACS Photon. 2 326 | Plasmonic Films Can Easily Be Better: Rules and Recipes
[25] | Leguy A M A, Hu Y, Campoy-Quiles M et al 2015 Chem. Mater. 27 3397 | Reversible Hydration of CH 3 NH 3 PbI 3 in Films, Single Crystals, and Solar Cells
[26] | Wu R, Yang J, Xiong J et al 2015 Org. Electron. 26 265 | Efficient electron-blocking layer-free planar heterojunction perovskite solar cells with a high open-circuit voltage
[27] | Bakker R M, Yuan H K, Liu Z et al 2008 Appl. Phys. Lett. 92 043101 | Enhanced localized fluorescence in plasmonic nanoantennae
[28] | Zhang Y, Wei T, Dong W et al 2015 Sci. Rep. 4 4850 | Vapor-deposited amorphous metamaterials as visible near-perfect absorbers with random non-prefabricated metal nanoparticles
[29] | Kao T S, Hong K B, Chou Y H et al 2016 Opt. Express 24 20696 | Localized surface plasmon for enhanced lasing performance in solution-processed perovskites
[30] | Monti A, Al A, Toscano A et al 2015 J. Appl. Phys. 117 123103 | Optical invisibility through metasurfaces made of plasmonic nanoparticles
[31] | Gontijo I, Boroditsky M, Yablonovitch E et al 1999 Phys. Rev. B 60 11564 | Coupling of InGaN quantum-well photoluminescence to silver surface plasmons
[32] | Purcell E M, Torrey H C and Pound R V 1946 Phys. Rev. 69 37 | Resonance Absorption by Nuclear Magnetic Moments in a Solid
[33] | Neogi A, Lee C W, Everitt H O et al 2002 Phys. Rev. B 66 153305 | Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling
[34] | Estrin Y, Rich D H, Kretinin A V et al 2013 Nano Lett. 13 1602 | Influence of Metal Deposition on ExcitonâSurface Plasmon Polariton Coupling in GaAs/AlAs/GaAs CoreâShell Nanowires Studied with Time-Resolved Cathodoluminescence
[35] | Xi B, Xu H, Xiao S et al 2011 Phys. Rev. B 83 165115 | Theory of coupling in dispersive photonic systems