[1] | Johnson R S 1977 Proc. R. Soc. Lond. Ser. A 357 131 | On the Modulation of Water Waves in the Neighbourhood of kh ≈ 1.363
[2] | Kodama Y 1985 J. Stat. Phys. 39 597 | Optical solitons in a monomode fiber
[3] | Clarkson P A and Tuszynski J A 1990 J. Phys. A 23 4269 | Exact solutions of the multidimensional derivative nonlinear Schrodinger equation for many-body systems of criticality
[4] | Kaup D J and Newell A C 1978 J. Math. Phys. 19 798 | An exact solution for a derivative nonlinear Schrödinger equation
[5] | Chen H H, Lee Y C and Liu C S 1979 Phys. Scr. 20 490 | Integrability of Nonlinear Hamiltonian Systems by Inverse Scattering Method
[6] | Kakei S, Sasa N and Satsuma J 1995 J. Phys. Soc. Jpn. 64 1519 | Bilinearization of a Generalized Derivative Nonlinear Schrödinger Equation
[7] | Gerdjikov V S and Ivanov M I 1983 Bull. J. Phys. 10 130 |
[8] | Kundu A 1987 Physica D 25 399 | Exact solutions to higher-order nonlinear equations through gauge transformation
[9] | Clarkson P A and Cosgrove C M 1987 J. Phys. A 20 2003 | Painleve analysis of the non-linear Schrodinger family of equations
[10] | Zhang J B, Chen S T and Li Q 2013 Phys. Scr. 88 065006 | Bilinear approaches for a finite-dimensional Hamiltonian system
[11] | Zhang J B, Zhang D J and Shen Q 2011 Appl. Math. Comput. 218 4494 | Bilinear approach for a symmetry constraint of the modified KdV equation
[12] | Zhang J B, Zhang D J and Chen D Y 2010 Commun. Theor. Phys. 53 211 | Solving the KdV Equation Under Bargmann Constraint via Bilinear Approach
[13] | Fan E G 2000 J. Math. Phys. 41 7769 | Integrable evolution systems based on GerdjikovâIvanov equations, bi-Hamiltonian structure, finite-dimensional integrable systems and N-fold Darboux transformation
[14] | Yu J, He J S and Han J W 2012 J. Math. Phys. 53 033708 | New Lax pairs of the Toda lattice and the nonlinearization under a higher-order Bargmann constraint
[15] | Fan E G 2000 J. Phys. A 33 6925 | Darboux transformation and soliton-like solutions for the Gerdjikov-Ivanov equation
[16] | Fan E G 2001 Commun. Theor. Phys. 35 651 | Explicit N -Fold Darboux Transformations and Soliton Solutions for Nonlinear Derivative Schrödinger Equations
[17] | Liu Y K and Li B 2017 Chin. Phys. Lett. 34 010202 | Rogue Waves in the (2+1)-Dimensional Nonlinear Schrödinger Equation with a Parity-Time-Symmetric Potential
[18] | Qian C, Rao J G, Liu Y B and He J S 2016 Chin. Phys. Lett. 33 110201 | Rogue Waves in the Three-Dimensional KadomtsevâPetviashvili Equation
[19] | Xu S W and He J S 2012 J. Math. Phys. 53 063507 | The rogue wave and breather solution of the Gerdjikov-Ivanov equation
[20] | Guo L et al 2014 Phys. Scr. 89 035501 | The higher order rogue wave solutions of the GerdjikovâIvanov equation
[21] | Dai H H and Fan E G 2004 Chaos Solitons & Fractals 22 93 | Variable separation and algebro-geometric solutions of the GerdjikovâIvanov equation
[22] | Hou Y, Fan E G and Zhao P 2013 J. Math. Phys. 54 073505 | Algebro-geometric solutions for the Gerdjikov-Ivanov hierarchy
[23] | Takahashi M and Konno K 1989 J. Phys. Soc. Jpn. 58 3505 | N Double Pole Solution for the Modified Korteweg-de Vries Equation by the Hirota's Method
[24] | Zhou J, Zhang D J and Zhao S L 2009 Phys. Lett. A 373 3248 | Breathers and limit solutions of the nonlinear lumped self-dual network equation