[1] | Mahan G D 2000 Many Particle Physics (New York: Kluwer Academic/Plenum Publishers) |
[2] | Blankenbecler R, Scalapino D J and Sugar R L 1981 Phys. Rev. D 24 2278 | Monte Carlo calculations of coupled boson-fermion systems. I
[3] | Hirsch J E 1983 Phys. Rev. B 28 4059(R) | Discrete Hubbard-Stratonovich transformation for fermion lattice models
[4] | Jarrell M and Gubernatis J E 1996 Phys. Rep. 269 133 | Bayesian inference and the analytic continuation of imaginary-time quantum Monte Carlo data
[5] | Bergeron D and Tremblay A M S 2016 Phys. Rev. E 94 023303 | Algorithms for optimized maximum entropy and diagnostic tools for analytic continuation
[6] | Goulko O, Mishchenko A S, Pollet L, Prokofév N and Svistunov B 2017 Phys. Rev. B 95 014102 | Numerical analytic continuation: Answers to well-posed questions
[7] | Creffield C E, Klepfish E G, Pike E R and Sarkar S 1995 Phys. Rev. Lett. 75 517 | Spectral Weight Function for the Half-Filled Hubbard Model: A Singular Value Decomposition Approach
[8] | Gunnarsson O, Haverkort M W and Sangiovanni G 2010 Phys. Rev. B 82 165125 | Analytical continuation of imaginary axis data for optical conductivity
[9] | Beach K S D 2004 arXiv:cond-mat/0403055[cond-mat.str-el] | Identifying the maximum entropy method as a special limit of stochastic analytic continuation
[10] | Sandvik A W 2016 Phys. Rev. E 94 063308 | Constrained sampling method for analytic continuation
[11] | Qin Y Q, Normand B, Sandvik A W and Meng Z Y 2017 Phys. Rev. Lett. 118 147207 | Amplitude Mode in Three-Dimensional Dimerized Antiferromagnets
[12] | Vidberg H J and Serene J 1977 J. Low Temp. Phys. 29 179 | Solving the Eliashberg equations by means ofN-point Pad� approximants
[13] | Beach K S D, Gooding R J and Marsiglio F 2000 Phys. Rev. B 61 5147 | Reliable Padé analytical continuation method based on a high-accuracy symbolic computation algorithm
[14] | Östlin A, Chioncel L and Vitos L 2012 Phys. Rev. B 86 235107 | One-particle spectral function and analytic continuation for many-body implementation in the exact muffin-tin orbitals method
[15] | Osolin Ž and Žitko R 2013 Phys. Rev. B 87 245135 | Pad? approximant approach for obtaining finite-temperature spectral functions of quantum impurity models using the numerical renormalization group technique
[16] | Schött J, Locht I L M, Lundin E, Grånäs O, Eriksson O and Marco I D 2016 Phys. Rev. B 93 075104 | Analytic continuation by averaging Pad? approximants
[17] | Ozaki T 2007 Phys. Rev. B 75 035123 | Continued fraction representation of the Fermi-Dirac function for large-scale electronic structure calculations
[18] | Croy A and Saalmann U 2009 Phys. Rev. B 80 073102 | Partial fraction decomposition of the Fermi function
[19] | Hu J, Xu R X and Yan Y J 2010 J. Chem. Phys. 133 101106 | Communication: Pad? spectrum decomposition of Fermi function and Bose function
[20] | Hu J, Luo M, Jiang F, Xu R X and Yan Y J 2011 J. Chem. Phys. 134 244106 | Pad? spectrum decompositions of quantum distribution functions and optimal hierarchical equations of motion construction for quantum open systems
[21] | Baym G and Mermin D 1961 J. Math. Phys. 2 232 | Determination of Thermodynamic Green's Functions