[1] | Camargo E G, Ueno K and Morishita T 2007 IEEE Sens. J. 7 1335 | High-Sensitivity Temperature Measurement With Miniaturized InSb Mid-IR Sensor
[2] | Qadri S B and Dinan J H 1985 Appl. Phys. Lett. 47 1066 | Xâray determination of dislocation density in epitaxial ZnCdTe
[3] | Zhang Y W, Zhang Y and Guan M 2014 Appl. Surf. Sci. 313 479 | Molecular beam epitaxial growth of AlSb/InAsSb heterostructures
[4] | Zhang Y W, Zhang Y and Guan M 2013 J. Appl. Phys. 114 153707 | Theoretical study of transport property in InAsSb quantum well heterostructures
[5] | Zhang Y W, Zhang Y and Guan M 2014 Phys. Status Solidi B 251 2287 | Self-consistent analysis of InAsSb quantum-well heterostructures
[6] | Zhao X M, Zhang Y et al 2017 J. Cryst. Growth 470 1 | Effect of InSb/In 0.9 Al 0.1 Sb superlattice buffer layer on the structural and electronic properties of InSb films
[7] | Sato J, Nagai Y and Hara S 2012 Int. Conf. Indium Phosphide & Relat. Mater. (Santa Barbara 27–30 August 2012) p 237 |
[8] | Cao X, Zhao D and Zhang Y 1988 Chin. Phys. Lett. 5 189 | The anomalous Hall effect in the metal-type amorphous InSb film
[9] | Kasap M, Acar S and Oezcelik S 2005 Chin. Phys. Lett. 22 1218 | Temperature-Dependent Galvanomagnetic Measurements on Doped InSb and InAs Grown by Liquid Encapsulated Czochralski
[10] | Kazakova O, Panchal V and Gallop J 2010 J. Appl. Phys. 107 09E708 | Ultrasmall particle detection using a submicron Hall sensor
[11] | Peter J A and Lee C W 2012 Chin. Phys. Lett. 29 117201 | Photo-Induced Electron Spin Polarization in a Narrow Band Gap Semiconductor Nanostructure
[12] | Biefeld R and Phillips J 2000 J. Cryst. Growth 209 567 | Growth of InSb on GaAs using InAlSb buffer layers
[13] | Debnath M, Zhang T and Roberts C 2004 J. Cryst. Growth 267 17 | High-mobility InSb thin films on GaAs (001) substrate grown by the two-step growth process
[14] | Guo J, Sun W G, Peng Z Y, Zhou Z Q, Xu Y Q and Niu Z C 2009 Chin. Phys. Lett. 26 047802 | Interfaces in InAs/GaSb Superlattices Grown by Molecular Beam Epitaxy
[15] | Yoshikawa A, Moriyasu Y and Kuze N 2015 J. Cryst. Growth 414 110 | High-quality InSb growth by metalorganic vapor phase epitaxy
[16] | Li Z, Liu G and Li M 2008 Jpn. J. Appl. Phys. 47 8730 | Surface Properties of the AlGaN/GaN Superlattice Grown at Different Temperatures by Metalorganic Chemical Vapor Deposition
[17] | Weng X, Rudawski N G, Wang P T and Goldman R S 2005 J. Appl. Phys. 97 043713 | Effects of buffer layers on the structural and electronic properties of InSb films
[18] | Chyi J, Kalem S and Kumar N S 1988 Appl. Phys. Lett. 53 1092 | Growth of InSb and InAs 1? x Sb x on GaAs by molecular beam epitaxy
[19] | Mahdi M and Sattar M 2012 20th Iranian Conf. Electr. Eng. (Tehran 15–17 May 2012) p 5 |
[20] | Zhang T, Clowes S and Debnath M 2004 Appl. Phys. Lett. 84 4463 | High-mobility thin InSb films grown by molecular beam epitaxy
[21] | Li Y B, Zhang Y and Zhang Y 2012 Appl. Surf. Sci. 258 6571 | Molecular beam epitaxial growth and characterization of GaSb layers on GaAs (001) substrates
[22] | Goryl G, Toton D, Tomaszewska N and Prauzner-Bechcicki J S 2010 Phys. Rev. B 82 165311 | Structure of the indium-rich InSb(001) surface
[23] | Okamoto F and Ando K 1964 Jpn. J. Appl. Phys. 3 605 | Anomalous Hall Effect in n-Type InSb in Pulsed High Electric Fields
[24] | Li Y B, Zhang Y and Zeng Y P 2010 J. Appl. Phys. 108 044504 | Self-consistent analysis of AlSb/InAs high electron mobility transistor structures
[25] | Atsushi O, Arata A, Takayuki A and Ichiro S 2001 J. Cryst. Growth 227 619 | InSb thin films grown on GaAs substrate and their magneto-resistance effect
[26] | Hurle D T J 2010 J. Appl. Phys. 107 121301 | A thermodynamic analysis of native point defect and dopant solubilities in zinc-blende III?V semiconductors
[27] | Jin Y J, Zhang D H, Chen X Z and Tang X H 2011 J. Cryst. Growth 318 356 | Sb antisite defects in InSb epilayers prepared by metalorganic chemical vapor deposition
[28] | Weng X, Goldman R S and Partin D L 2000 J. Appl. Phys. 88 6276 | Evolution of structural and electronic properties of highly mismatched InSb films
[29] | Wu S D, Guo L W and Li Z H 2005 J. Cryst. Growth 277 21 | Effect of the low-temperature buffer thickness on quality of InSb grown on GaAs substrate by molecular beam epitaxy
[30] | Zhang X, Statonbevan A E and Pashley D W 1990 J. Appl. Phys. 67 800 | A transmission electron microscopy and reflection highâenergy electron diffraction study of the initial stages of the heteroepitaxial growth of InSb on GaAs (001) by molecular beam epitaxy
[31] | Tran T L, Hatami F and Masselink W T 2008 J. Electron. Mater. 37 1799 | Comparison of MBE Growth of InSb on Si (001) and GaAs (001)
[32] | Soderstrom J R, Cumming M M, Yao J Y and Andersson T G 1992 Semicond. Sci. Technol. 7 337 | Molecular beam epitaxy growth and characterization of InSb layers on GaAs substrates
[33] | Pödör B 1966 Phys. Status Solidi B 16 167 |
[34] | Dexter D L and Seitz F 1952 Phys. Rev. 86 964 | Effects of Dislocations on Mobilities in Semiconductors
[35] | Ayers J E 1994 J. Cryst. Growth 135 71 | The measurement of threading dislocation densities in semiconductor crystals by X-ray diffraction
[36] | Zhang Y H, Chen P P and Lin T 2011 MBE Growth Electr. Properties InSb Film GaAs Substrate Seventh Int. Conf. Thin Film Phys. Appl. (Shanghai 24–27 September 2010) |
[37] | Gao H C and Yin Z J 2015 Chin. Phys. Lett. 32 068102 | Theoretical and Experimental Optimization of InGaAs Channels in GaAs PHEMT Structure