Enhanced Luminescence of InGaN-Based 395nm Flip-Chip Near-Ultraviolet Light-Emitting Diodes with Al as N-Electrode
-
Abstract
High-reflectivity Al-based n-electrode is used to enhance the luminescence properties of InGaN-based 395 nm flip-chip near-ultraviolet (UV) light-emitting diodes. The Al-only metal layer could form the Ohmic contact on the plasma etched n-GaN by means of chemical pre-treatment, with the lowest specific contact resistance of 2.211×10−5 Ω⋅cm2. The Al n-electrodes enhance light output power of the 395 nm flip-chip near-UV light-emitting diodes by more than 33% compared with the Ti/Al n-electrodes. Meanwhile, the electrical characteristics of these chips with two types of n-electrodes do not show any significant discrepancy. The near-field light distribution measurement of packaged chips confirms that the enhanced luminescence is ascribed to the high reflectivity of the Al electrodes in the UV region. After the accelerated aging test for over 1000 h, the luminous degradation of the packaged chips with Al n-electrodes is less than 3%, which proves the reliability of these chips with the Al-based electrodes. Our approach shows a simplified design and fabrication of high-reflectivity n-electrode for flip-chip near-UV light emitting diodes. -
-
References
[1] Yi L H, He X P, Zhou L Y, Gong F Z, Wang R F and Sun J H 2010 J. Lumin. 130 1113 doi: 10.1016/j.jlumin.2010.02.006[2] Kuo C H, Sheu J K, Chang S J, Su Y K, Wu L W, Tsai J M, Liu C H and Wu R K 2003 Jpn. J. Appl. Phys. 42 2284 doi: 10.1143/JJAP.42.2284[3] Sheu J K, Chang S J, Kuo C H, Su Y K, Wu L W, Lin Y C, Lai W C, Tsai J M, Chi G C and Wu R K 2003 IEEE Photon. Technol. Lett. 15 18 doi: 10.1109/LPT.2002.805852[4] Zhang X G, Zhang J L, Huang J Q, Tang X P and Gong M L 2010 J. Lumin. 130 554 doi: 10.1016/j.jlumin.2009.10.030[5] Shchekin O B, Epler J E, Trottier T A, Margalith T, Steigerwald D A, Holcomb M O, Martin P S and Krames M R 2006 Appl. Phys. Lett. 89 071109 doi: 10.1063/1.2337007[6] Baik K H, Min B K, Kim J Y, Kim H K, Sone C, Park Y and Kim H 2010 J. Appl. Phys. 108 063105 doi: 10.1063/1.3478740[7] Tu S H, Lan C J, Wang S H, Lee M L, Chang K H, Lin R M, Chang J Y and Sheu J K 2010 Appl. Phys. Lett. 96 133504 doi: 10.1063/1.3377872[8] Mohammad S N 2004 J. Appl. Phys. 95 7940 doi: 10.1063/1.1712016[9] Hu C Y, Ding Z B, Qin Z X, Chen Z Z, Wang Y J, Yang Z J, Hu X D, Yu T J, Yu L S, Yao S D and Zhang G Y 2006 Semicond. Sci. Technol. 21 938 doi: 10.1088/0268-1242/21/7/019[10] Hu W D, Chen X S, Quan Z J, Xia C S, Lu W and Ye P D 2006 J. Appl. Phys. 100 074501 doi: 10.1063/1.2354327[11] Jiang R, Lu H, Chen D J, Ren F F, Yan D W, Zhang R and Zheng Y D 2013 Chin. Phys. B 22 047805 doi: 10.1088/1674-1056/22/4/047805[12] Foresi J S and Moustakas T D 1993 Appl. Phys. Lett. 62 2859 doi: 10.1063/1.109207[13] Smith L L, Davis R F, Kim M J, Carpenter R W and Huang Y 1996 J. Mater. Res. 11 2257 doi: 10.1557/JMR.1996.0286[14] Luther B P, Mohney S E, Jackson T N, Asif M, Chen Q and Yang J W 1997 Appl. Phys. Lett. 70 57 doi: 10.1063/1.119305[15] Motayed A, Jah M, Sharma A, Anderson W T, Litton C W and Mohammad S N 2004 J. Vac. Sci. Technol. B 22 663 doi: 10.1116/1.1667506 -
Related Articles
[1] Jiajun Li, Dongchao Ji, Zhibo Zhang, Yanan Yang, Ruicong Zhang, Tianyu Wang, Yumin Zhang, Wenxin Cao, Jiaqi Zhu. MWCNT Doped Reverse-Mode Polymer Network Liquid Crystals with Frequency Response Property [J]. Chin. Phys. Lett., 2024, 41(3): 038501. doi: 10.1088/0256-307X/41/3/038501 [2] CHENG Wen-Kai, GAO Bin, PU Hai-Hui, LIU Jian-Hua. Self Ordering of Nematic Liquid Crystal Molecules in HPDLC Bragg Gratings [J]. Chin. Phys. Lett., 2012, 29(6): 066101. doi: 10.1088/0256-307X/29/6/066101 [3] CHEN Hua, WU Xiu-Mei, YANG Wen-Xing. Modulated Terahertz Transmission through Sub-Wavelength Cu Grating by Liquid Water [J]. Chin. Phys. Lett., 2010, 27(1): 010701. doi: 10.1088/0256-307X/27/1/010701 [4] SONG Jing, LIU Yong-Gang, MA Ji, XUAN Li. Low Driving Voltage and Analysis of Azobenzene Polymer Doped Liquid Crystal Grating [J]. Chin. Phys. Lett., 2006, 23(12): 3285-3287. [5] WEI Hao-Yun, CAO Liang-Cai, GU Claire, XU Zhen-Feng, HE Ming-Zhao, HE Qing-Sheng, HE Shu-Rong, JIN Guo-Fan. Holographic Grating Formation in Cationic Photopolymers with Dark Reaction [J]. Chin. Phys. Lett., 2006, 23(11): 2960-2963. [6] Jun Won AN. Cascade Grating Structure for Increasing the Channel Number on Holographic Demultiplexer [J]. Chin. Phys. Lett., 2006, 23(6): 1459-1461. [7] TAO Wei-Dong, PAN Xue-Feng, CHEN Jian, YAN Fei-Biao, BAI Gui-Ru, LU Zu-Kang. Chiral Parameter of Transparent Films Containing Polymer Cholesteric Liquid Crystal-R [J]. Chin. Phys. Lett., 2005, 22(4): 931-933. [8] LUO Shou-Jun, LIU Guo-Dong, HE Qing-Sheng, JIN Guo-Fan. Holographic Grating Formation in Photochromic Diarylethene-Doped Polymeric Thin Films [J]. Chin. Phys. Lett., 2005, 22(1): 107-109. [9] ZHANG Jiang-Ying, MING Hai, WANG Pei, SUN Xiao-Hong, LU Yong-Hua, WU Yun-Xia, XIE Jian-Ping, ZHANG Qi-Jin, LIU Jian, XIE Ai-Fang, ZHANG Ze-Bo, GU Ben-Yuan. Birefringence Grating and Surface Grating in Azobenzene Polymer Liquid Crystal Films Investigated by Near-Field Optical Method [J]. Chin. Phys. Lett., 2003, 20(7): 1043-1046. [10] LIU Hui, ZHANG Bo, GONG Qi-Huang, BAI Yao-Wen, CHEN Xiao-Fang, WAN Xin-Hua, ZHOU Qi-Feng. A New Photorefractive Polymer/Liquid Crystal System [J]. Chin. Phys. Lett., 2001, 18(7): 909-911.