Loading [MathJax]/jax/output/SVG/fonts/TeX/Main/Regular/GreekAndCoptic.js

Enhanced Luminescence of InGaN-Based 395nm Flip-Chip Near-Ultraviolet Light-Emitting Diodes with Al as N-Electrode

Funds: Supported by the National Key Research and Development Program of China under Grant Nos 2016YFB0400901 and 2016YFB0400804, the Key Laboratory of Infrared Imaging Materials and Detectors of Shanghai Institute of Technical Physics of Chinese Academy of Sciences under Grant No IIMDKFJJ-15-07, the National Natural Science Foundation of China under Grant Nos 61675079, 11574166 and 61377034, and the China Postdoctoral Foundation under Grant No 2016M602287.
  • Received Date: March 02, 2017
  • Published Date: June 30, 2017
  • High-reflectivity Al-based n-electrode is used to enhance the luminescence properties of InGaN-based 395 nm flip-chip near-ultraviolet (UV) light-emitting diodes. The Al-only metal layer could form the Ohmic contact on the plasma etched n-GaN by means of chemical pre-treatment, with the lowest specific contact resistance of 2.211×105Ωcm2. The Al n-electrodes enhance light output power of the 395 nm flip-chip near-UV light-emitting diodes by more than 33% compared with the Ti/Al n-electrodes. Meanwhile, the electrical characteristics of these chips with two types of n-electrodes do not show any significant discrepancy. The near-field light distribution measurement of packaged chips confirms that the enhanced luminescence is ascribed to the high reflectivity of the Al electrodes in the UV region. After the accelerated aging test for over 1000 h, the luminous degradation of the packaged chips with Al n-electrodes is less than 3%, which proves the reliability of these chips with the Al-based electrodes. Our approach shows a simplified design and fabrication of high-reflectivity n-electrode for flip-chip near-UV light emitting diodes.
  • Article Text

  • [1]
    Yi L H, He X P, Zhou L Y, Gong F Z, Wang R F and Sun J H 2010 J. Lumin. 130 1113 doi: 10.1016/j.jlumin.2010.02.006

    CrossRef Google Scholar

    [2]
    Kuo C H, Sheu J K, Chang S J, Su Y K, Wu L W, Tsai J M, Liu C H and Wu R K 2003 Jpn. J. Appl. Phys. 42 2284 doi: 10.1143/JJAP.42.2284

    CrossRef Google Scholar

    [3]
    Sheu J K, Chang S J, Kuo C H, Su Y K, Wu L W, Lin Y C, Lai W C, Tsai J M, Chi G C and Wu R K 2003 IEEE Photon. Technol. Lett. 15 18 doi: 10.1109/LPT.2002.805852

    CrossRef Google Scholar

    [4]
    Zhang X G, Zhang J L, Huang J Q, Tang X P and Gong M L 2010 J. Lumin. 130 554 doi: 10.1016/j.jlumin.2009.10.030

    CrossRef Google Scholar

    [5]
    Shchekin O B, Epler J E, Trottier T A, Margalith T, Steigerwald D A, Holcomb M O, Martin P S and Krames M R 2006 Appl. Phys. Lett. 89 071109 doi: 10.1063/1.2337007

    CrossRef Google Scholar

    [6]
    Baik K H, Min B K, Kim J Y, Kim H K, Sone C, Park Y and Kim H 2010 J. Appl. Phys. 108 063105 doi: 10.1063/1.3478740

    CrossRef Google Scholar

    [7]
    Tu S H, Lan C J, Wang S H, Lee M L, Chang K H, Lin R M, Chang J Y and Sheu J K 2010 Appl. Phys. Lett. 96 133504 doi: 10.1063/1.3377872

    CrossRef Google Scholar

    [8]
    Mohammad S N 2004 J. Appl. Phys. 95 7940 doi: 10.1063/1.1712016

    CrossRef Google Scholar

    [9]
    Hu C Y, Ding Z B, Qin Z X, Chen Z Z, Wang Y J, Yang Z J, Hu X D, Yu T J, Yu L S, Yao S D and Zhang G Y 2006 Semicond. Sci. Technol. 21 938 doi: 10.1088/0268-1242/21/7/019

    CrossRef Google Scholar

    [10]
    Hu W D, Chen X S, Quan Z J, Xia C S, Lu W and Ye P D 2006 J. Appl. Phys. 100 074501 doi: 10.1063/1.2354327

    CrossRef Google Scholar

    [11]
    Jiang R, Lu H, Chen D J, Ren F F, Yan D W, Zhang R and Zheng Y D 2013 Chin. Phys. B 22 047805 doi: 10.1088/1674-1056/22/4/047805

    CrossRef Google Scholar

    [12]
    Foresi J S and Moustakas T D 1993 Appl. Phys. Lett. 62 2859 doi: 10.1063/1.109207

    CrossRef Google Scholar

    [13]
    Smith L L, Davis R F, Kim M J, Carpenter R W and Huang Y 1996 J. Mater. Res. 11 2257 doi: 10.1557/JMR.1996.0286

    CrossRef Google Scholar

    [14]
    Luther B P, Mohney S E, Jackson T N, Asif M, Chen Q and Yang J W 1997 Appl. Phys. Lett. 70 57 doi: 10.1063/1.119305

    CrossRef Google Scholar

    [15]
    Motayed A, Jah M, Sharma A, Anderson W T, Litton C W and Mohammad S N 2004 J. Vac. Sci. Technol. B 22 663 doi: 10.1116/1.1667506

    CrossRef Google Scholar

  • Related Articles

    [1]Jiajun Li, Dongchao Ji, Zhibo Zhang, Yanan Yang, Ruicong Zhang, Tianyu Wang, Yumin Zhang, Wenxin Cao, Jiaqi Zhu. MWCNT Doped Reverse-Mode Polymer Network Liquid Crystals with Frequency Response Property [J]. Chin. Phys. Lett., 2024, 41(3): 038501. doi: 10.1088/0256-307X/41/3/038501
    [2]CHENG Wen-Kai, GAO Bin, PU Hai-Hui, LIU Jian-Hua. Self Ordering of Nematic Liquid Crystal Molecules in HPDLC Bragg Gratings [J]. Chin. Phys. Lett., 2012, 29(6): 066101. doi: 10.1088/0256-307X/29/6/066101
    [3]CHEN Hua, WU Xiu-Mei, YANG Wen-Xing. Modulated Terahertz Transmission through Sub-Wavelength Cu Grating by Liquid Water [J]. Chin. Phys. Lett., 2010, 27(1): 010701. doi: 10.1088/0256-307X/27/1/010701
    [4]SONG Jing, LIU Yong-Gang, MA Ji, XUAN Li. Low Driving Voltage and Analysis of Azobenzene Polymer Doped Liquid Crystal Grating [J]. Chin. Phys. Lett., 2006, 23(12): 3285-3287.
    [5]WEI Hao-Yun, CAO Liang-Cai, GU Claire, XU Zhen-Feng, HE Ming-Zhao, HE Qing-Sheng, HE Shu-Rong, JIN Guo-Fan. Holographic Grating Formation in Cationic Photopolymers with Dark Reaction [J]. Chin. Phys. Lett., 2006, 23(11): 2960-2963.
    [6]Jun Won AN. Cascade Grating Structure for Increasing the Channel Number on Holographic Demultiplexer [J]. Chin. Phys. Lett., 2006, 23(6): 1459-1461.
    [7]TAO Wei-Dong, PAN Xue-Feng, CHEN Jian, YAN Fei-Biao, BAI Gui-Ru, LU Zu-Kang. Chiral Parameter of Transparent Films Containing Polymer Cholesteric Liquid Crystal-R [J]. Chin. Phys. Lett., 2005, 22(4): 931-933.
    [8]LUO Shou-Jun, LIU Guo-Dong, HE Qing-Sheng, JIN Guo-Fan. Holographic Grating Formation in Photochromic Diarylethene-Doped Polymeric Thin Films [J]. Chin. Phys. Lett., 2005, 22(1): 107-109.
    [9]ZHANG Jiang-Ying, MING Hai, WANG Pei, SUN Xiao-Hong, LU Yong-Hua, WU Yun-Xia, XIE Jian-Ping, ZHANG Qi-Jin, LIU Jian, XIE Ai-Fang, ZHANG Ze-Bo, GU Ben-Yuan. Birefringence Grating and Surface Grating in Azobenzene Polymer Liquid Crystal Films Investigated by Near-Field Optical Method [J]. Chin. Phys. Lett., 2003, 20(7): 1043-1046.
    [10]LIU Hui, ZHANG Bo, GONG Qi-Huang, BAI Yao-Wen, CHEN Xiao-Fang, WAN Xin-Hua, ZHOU Qi-Feng. A New Photorefractive Polymer/Liquid Crystal System [J]. Chin. Phys. Lett., 2001, 18(7): 909-911.

Catalog

    Article views (238) PDF downloads (632) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return