[1] | Mathieu P 1988 J. Math. Phys. 29 2499 | Supersymmetric extension of the Kortewegâde Vries equation
[2] | Bellucci S, Ivanov E, Krivonos S and Pichugin A 1993 Phys. Lett. B 312 463 | N = 2 super Boussinesq hierarchy: Lax pairs and conservation laws
[3] | Manin Yu I and Radul A O 1985 Commun. Math. Phys. 98 65 | A supersymmetric extension of the Kadomtsev-Petviashvili hierarchy
[4] | Roelofs G H M and Kersten P H M 1992 J. Math. Phys. 33 2185 | Supersymmetric extensions of the nonlinear Schrödinger equation: Symmetries and coverings
[5] | Popowicz Z 1994 Phys. Lett. A 194 375 | The extended supersymmetrization of the nonlinear Schro¨dinger equation
[6] | Makhankov V G and Pashaev O K 1992 J. Math. Phys. 33 2923 | Continual classical Heisenberg models defined on graded su(2,1) and su(3) algebras
[7] | Guo J F, Wang S K, Wu K, Yan Z W and Zhao W Z 2009 J. Math. Phys. 50 113502 | Integrable higher order deformations of Heisenberg supermagnetic model
[8] | Yan Z W, Li M L, Wu K and Zhao W Z 2010 Commun. Theor. Phys. 53 21 | Integrable Deformations of Heisenberg Supermagnetic Model
[9] | Saha M and Roy C A 1999 Int. J. Theor. Phys. 38 2037 |
[10] | Yan Z W, Chen M R, Wu K and Zhao W Z 2012 J. Phys. Soc. Jpn. 81 094006 | (2+1)-Dimensional Integrable Heisenberg Supermagnet Model
[11] | Yan Z W 2017 Z. Naturforsch. A 72 331 | On the Heisenberg Supermagnet Model in (2+1)-Dimensions
[12] | Liu Q P 1995 Lett. Math. Phys. 35 115 | Darboux transformations for supersymmetric korteweg-de vries equations
[13] | Chaichian M and Kulish P P 1978 Phys. Lett. B 78 413 | On the method of inverse scattering problem and Bäcklund transformations for supersymmetric equations
[14] | Mathieu P 1988 Phys. Lett. A 128 169 | The Painleve´property for fermionic extensions of the Korteweg-de Vries equation
[15] | Ibort A, Martinez Alonso L and Reus E 1996 J. Math. Phys. 37 6157 | Explicit solutions of supersymmetric KP hierarchies: Supersolitons and solitinos
[16] | McArthur I N and Yung C M 1993 Mod. Phys. Lett. A 8 1739 | HIROTA BILINEAR FORM FOR THE SUPER- KdV HIERARCHY
[17] | Ma W X, He J S and Qin Z Y 2008 J. Math. Phys. 49 033511 | A supertrace identity and its applications to superintegrable systems
[18] | Yu J, He J S, Ma W X and Cheng Y 2010 Chin. Ann. Math. B 31 361 | The Bargmann symmetry constraint and binary nonlinearization of the super Dirac systems
[19] | Wahlquist H D and Estabrook F B 1975 J. Math. Phys. 16 1 | Prolongation structures of nonlinear evolution equations
[20] | Wang D S, Yin S J, Tian Y and Liu Y F 2014 Appl. Math. Comput. 229 296 |
[21] | Wang D S and Wei X Q 2016 Appl. Math. Lett. 51 60 | Integrability and exact solutions of a two-component Kortewegâde Vries system
[22] | Morris H C 1976 J. Math. Phys. 17 1870 | Prolongation structures and nonlinear evolution equations in two spatial dimensions
[23] | Morris H C 1977 J. Math. Phys. 18 285 | Prolongation structures and nonlinear evolution equations in two spatial dimensions. II. A generalized nonlinear SchroÌdinger equation
[24] | Lu Q K, Guo H Y and Wu K 1983 Commun. Theor. Phys. 2 1029 | A Formulation of Nonlinear Gauge Theory and its Applications
[25] | Guo H Y, Hsiang Y Y and Wu K 1982 Commun. Theor. Phys. 1 495 | Connection Theory of Fibre Bundle and Prolongation Structures of Nonlinear Evolution Equations
[26] | Cheng J P, Wang S K, Wu K and Zhao W Z 2010 J. Math. Phys. 51 093501 | Fermionic covariant prolongation structure theory for supernonlinear evolution equation
[27] | Yan Z W, Li M L, Wu K and Zhao W Z 2013 J. Math. Phys. 54 033506 | Fermionic covariant prolongation structure theory for multidimensional super nonlinear evolution equation
[28] | Yang J Y and Ma W X 2016 Mod. Phys. Lett. B 30 1650381 | Conservation laws of a perturbed KaupâNewell equation