Weakly Nonlinear Rayleigh–Taylor Instability in Incompressible Fluids with Surface Tension
-
Abstract
A weakly nonlinear model is established for incompressible Rayleigh–Taylor instability with surface tension. The temporal evolution of a perturbed interface is explored analytically via the third-order solution. The dependence of the first three harmonics on the surface tension is discussed. The amplitudes of bubble and spike are greatly affected by surface tension. The saturation amplitude of the fundamental mode versus the Atwood number A is investigated with surface tension into consideration. The saturation amplitude decreases with increasing A. Surface tension exhibits a stabilizing phenomenon. It is shown that the asymmetrical development of the perturbed interface occurs much later for large surface tension effect. -
-
References
[1] Rayleigh L 1883 Proc. London Math. Soc. 14 170[2] Taylor G 1950 Proc. R. Soc. London Ser. A 201 192 doi: 10.1098/rspa.1950.0052[3] Nuckolls J, Wood L, Thiessen A and Zimmerman G 1972 Nature 239 139 doi: 10.1038/239139a0[4] Gamezo V N, Khokhlov A M, Oran E S, Chtchelkanova A Y and Rosenberg R O 2003 Science 299 77 doi: 10.1126/science.1078129[5] Remington B A, Drake R P and Ryutov D D 2006 Rev. Mod. Phys. 78 755 doi: 10.1103/RevModPhys.78.755[6] Wang L F, Ye W H and Li Y J 2010 Chin. Phys. Lett. 27 025203 doi: 10.1088/0256-307X/27/2/025203[7] Guo H Y et al. 2014 Chin. Phys. Lett. 31 044702 doi: 10.1088/0256-307X/31/4/044702[8] Yang B L, Wang L F, Ye W H and Xue C 2011 Phys. Plasmas 18 072111 doi: 10.1063/1.3609773[9] Piriz A R et al. 1997 Phys. Plasmas 4 1117 doi: 10.1063/1.872200[10] Ye W H, Zhang W Y and He X T 2002 Phys. Rev. E 65 057401 doi: 10.1103/PhysRevE.65.057401[11] Wang L F, Ye W H and Li Y J 2010 Chin. Phys. Lett. 27 025202 doi: 10.1088/0256-307X/27/2/025202[12] Wang L F et al. 2012 Phys. Plasmas 19 100701 doi: 10.1063/1.4759161[13] Bellman R and Pennington R H 1954 Quart. Appl. Math. 12 151 doi: 10.1090/qam/63198[14] Chandrasekhar S 1961 Hydrodynamic and Hydromagnetic Stability London: Oxford University chap X[15] Mikaelian K O 1990 Phys. Rev. A 42 7211 doi: 10.1103/PhysRevA.42.7211[16] Jacobs J W and Catton I 1988 J. Fluid Mech. 187 329 doi: 10.1017/S002211208800045X[17] Velikovich A L and Dimonte G 1996 Phys. Rev. Lett. 76 3112 doi: 10.1103/PhysRevLett.76.3112[18] Wang L F, Wu J F, Guo H Y, Ye W H, Liu J, Zhang W Y and He X T 2015 Phys. Plasmas 22 082702 doi: 10.1063/1.4928088[19] Liu W H, Wang L F, Ye W H and He X T 2012 Phys. Plasmas 19 042705 doi: 10.1063/1.3702063[20] Wang L F, Guo H Y, Wu J F, Ye W H, Liu J, Zhang W Y and He X T 2014 Phys. Plasmas 21 122710 doi: 10.1063/1.4904363[21] Wang L F et al. 2012 Phys. Plasmas 19 112706 doi: 10.1063/1.4766165 -
Related Articles