[1] | Ding H T, Karsch F and Mukherjee S 2015 Int. J. Mod. Phys. E 24 1530007 | Thermodynamics of strong-interaction matter from lattice QCD
[2] | Cleymans J and Redlich K 1998 Phys. Rev. Lett. 81 5284 | Unified Description of Freeze-Out Parameters in Relativistic Heavy Ion Collisions
[3] | Hasenfratz P and Karsch F 1983 Phys. Lett. B 125 308 | Chemical potential on the lattice
[4] | Philipsen O 2006 PoS LAT 2005 016 |
| Schmidt C 2006 PoS LAT 2006 021 |
| De Forcrand P 2009 PoS LAT 2009 010 |
| Aarts G 2012 PoS LAT 2012 017 |
[5] | Cea P, Cosmai L and Papa A 2016 Phys. Rev. D 93 014507 | Critical line of flavor QCD: Toward the continuum limit
[6] | De Forcrand P and Philipsen O 2010 Phys. Rev. Lett. 105 152001 | Constraining the QCD Phase Diagram by Tricritical Lines at Imaginary Chemical Potential
[7] | D'Elia M and Sanfilippo F 2009 Phys. Rev. D 80 111501 | Order of the Roberge-Weiss endpoint (finite size transition) in QCD
[8] | Bonati C, Cossu G, D'Elia M and Sanfilippo F 2011 Phys. Rev. D 83 054505 | Roberge-Weiss endpoint in QCD
[9] | Nagata K and Nakamura A 2011 Phys. Rev. D 83 114507 | Imaginary chemical potential approach for the pseudocritical line in the QCD phase diagram with clover-improved Wilson fermions
[10] | D'Elia M, Di Renzo F and Lombardo M P 2007 Phys. Rev. D 76 114509 | Strongly interacting quark-gluon plasma, and the critical behavior of QCD at imaginary
[11] | De Forcrand P and Philipsen O 2008 J. High Energy Phys. 0811 012 | The chiral critical point of N f = 3 QCD at finite density to the order (μ/ T ) 4
[12] | Wu L K, Luo X Q and Chen H C 2007 Phys. Rev. D 76 034505 | Phase structure of lattice QCD with two flavors of Wilson quarks at finite temperature and chemical potential
[13] | Wu L K 2010 Chin. Phys. Lett. 27 021101 | Transition Temperature of Lattice Quantum Chromodynamics with Two Flavors with a Small Chemical Potential
[14] | Symanzik K 1983 Nucl. Phys. B 226 187 | Continuum limit and improved action in lattice theories
[15] | Luscher M and Weisz P 1985 Phys. Lett. B 158 250 | Computation of the action for on-shell improved lattice gauge theories at weak coupling
[16] | Lepage G P and Mackenzie P B 1993 Phys. Rev. D 48 2250 | Viability of lattice perturbation theory
[17] | Alford M G, Dimm W, Lepage G P, Hockney G and Mackenzie P B 1995 Phys. Lett. B 361 87 | Lattice QCD on small computers
[18] | Blum T et al 1997 Phys. Rev. D 55 R1133 | Improving flavor symmetry in the Kogut-Susskind hadron spectrum
[19] | Orginos K et al [MILC Collaboration] 1999 Phys. Rev. D 60 054503 | Variants of fattening and flavor symmetry restoration
[20] | Bazavov A et al 2012 Phys. Rev. D 85 054503 | Chiral and deconfinement aspects of the QCD transition
[21] | Bazavov A et al [MILC Collaboration] 2010 Rev. Mod. Phys. 82 1349 | Nonperturbative QCD simulations with flavors of improved staggered quarks
[22] | Naik S 1989 Nucl. Phys. B 316 238 | On-shell improved action for QCD with susskind fermions and the asymptotic freedom scale
[23] | Bernard CW et al [MILC Collaboration] 1998 Phys. Rev. D 58 014503 | Quenched hadron spectroscopy with improved staggered quark action
[24] | Clark M A and Kennedy A D 2004 Nucl. Phys. Proc. Suppl. 129–130 850 | The RHMC algorithm for 2 flavours of dynamical staggered fermions
[25] | Clark M A and Kennedy A D 2007 Phys. Rev. D 75 011502 | Accelerating staggered-fermion dynamics with the rational hybrid Monte Carlo algorithm
[26] | Clark M A and Kennedy A D 2007 Phys. Rev. Lett. 98 051601 | Accelerating Dynamical-Fermion Computations Using the Rational Hybrid Monte Carlo Algorithm with Multiple Pseudofermion Fields
[27] | Takaishi T and De Forcrand P 2006 Phys. Rev. E 73 036706 | Testing and tuning symplectic integrators for the hybrid Monte Carlo algorithm in lattice QCD
[28] | Omeylan I P, Mryglod I M and Folk R 2003 Comp. Phys. Comm. 151 272 | Symplectic analytically integrable decomposition algorithms: classification, derivation, and application to molecular dynamics, quantum and celestial mechanics simulations
[29] | Roberge A and Weiss N 1986 Nucl. Phys. B 275 734 | Gauge theories with imaginary chemical potential and the phases of QCD
[30] | De Forcrand P and Philipsen O 2002 Nucl. Phys. B 642 290 | The QCD phase diagram for small densities from imaginary chemical potential
[31] | Sommer R 1994 Nucl. Phys. B 411 839 | A new way to set the energy scale in lattice gauge theories and its application to the static force and σs in SU (2) Yang-Mills theory
[32] | Cheng M et al 2006 Phys. Rev. D 74 054507 | Transition temperature in QCD
[33] | Bonati C, D'Elia M, Mariti M, Mesiti M, Negro F and Sanfilippo F 2015 Phys. Rev. D 92 054503 | Curvature of the chiral pseudocritical line in QCD: Continuum extrapolated results
[34] | http://physics. utah.edu/ detar/milc/ |