[1] | Chen L Y, Fu Z D, Zhang G Q, Hao X P, Jiang Q K, Wang X D, Cao Q P, Franz H, Liu Y G, Xie H S, Zhang S L, Wang B Y, Zeng Y W and Jiang J Z 2008 Phys. Rev. Lett. 100 075501 | New Class of Plastic Bulk Metallic Glass
[2] | Zhu Z W, Gu L, Xie G Q, Zhang W, Inoue A, Zhang H F and Hu Z Q 2011 Acta Mater. 59 2814 | Relation between icosahedral short-range ordering and plastic deformation in Zr–Nb–Cu–Ni–Al bulk metallic glasses
[3] | Das J, Tang M B, Kim K B, Theissmann R, Baier F, Wang W H and Eckert J 2005 Phys. Rev. Lett. 94 205501 | “Work-Hardenable” Ductile Bulk Metallic Glass
[4] | Zhao J X, Wu F F, Qu R T, Li S X and Zhang Z F 2010 Acta Mater. 58 5420 | Plastic deformability of metallic glass by artificial macroscopic notches
[5] | Cao Q P, Liu J W, Yang K J, Xu F, Yao Z Q, Minkow A, Fecht H J, Ivanisenko J, Chen L Y, Wang X D, Qu S X and Jiang J Z 2010 Acta Mater. 58 1276 | Effect of pre-existing shear bands on the tensile mechanical properties of a bulk metallic glass
[6] | Kim D H, Kim W T, Park E S, Mattern N and Eckert J 2013 Prog. Mater. Sci. 58 1103 | Phase separation in metallic glasses
[7] | Park J M, Han J H, Mattern N, Kim D H and Eckert J 2012 Metall. Mater. Trans. A 43 2598 | Designing Zr-Cu-Co-Al Bulk Metallic Glasses with Phase Separation Mediated Plasticity
[8] | Pan J, Liu L and Chan K C 2009 Scr. Mater. 60 822 | Enhanced plasticity by phase separation in CuZrAl bulk metallic glass with micro-addition of Fe
[9] | Pan J, Chan K C, Chen Q, Li N, Guo S F and Liu L 2010 J. Alloys Compd. 504 S74 | The effect of microalloying on mechanical properties in CuZrAl bulk metallic glass
[10] | Greer A L and Ma E 2007 MRS Bull. 32 611 | Bulk Metallic Glasses: At the Cutting Edge of Metals Research
[11] | Greer A L, Cheng Y Q and Ma E 2013 Mater. Sci. Eng. R Rep. 74 71 | Shear bands in metallic glasses
[12] | Sohn S W, Yook W, Kim W T and Kim D H 2012 Intermetallics 23 57 | Phase separation in bulk-type Gd–Zr–Al–Ni metallic glass
[13] | Wang C P, Liu X J, Ohnuma I, Kainuma R and Ishida K 2002 Science 297 990 | Formation of Immiscible Alloy Powders with Egg-Type Microstructure
[14] | Wilde G and Perepezko J H 1999 Acta Mater. 47 3009 | Critical-point wetting at the metastable chemical binodal in undercooled Fe–Cu alloys
[15] | Curiotto S, Pryds N H, Johnson E and Battezzati L 2006 Metall. Mater. Trans. A 37 2361 | Liquid-liquid phase separation and remixing in the Cu-Co system
[16] | Ren Q, Wang N, Zhang L, Wang J Y, Zheng Y P and Yao W J 2012 Acta Phys. Sin. 61 196401 (in Chinese) |
[17] | Zhao J Z and Ratke L 2004 Scr. Mater. 50 543 | A model describing the microstructure evolution during a cooling of immiscible alloys in the miscibility gap
[18] | He J, Mattem N, Tan J, Zhao J Z, Kaban I, Wang Z, Ratke L, Kim D H, Kim W T and Eckert J 2013 Acta Mater. 61 2102 | A bridge from monotectic alloys to liquid-phase-separated bulk metallic glasses: Design, microstructure and phase evolution
[19] | Wang C P, Liu X J, Takaku Y, Ohnuma I, Kainuma R and Ishida K 2004 Metall. Mater. Trans. A 35 1243 | Formation of core-type macroscopic morphologies in Cu-Fe base alloys with liquid miscibility gap
[20] | Fang T, Wang L, Peng C X and Qi Y 2012 J. Phys.: Condens. Matter 24 505103 | Liquid immiscibility in an Fe–Cu alloy by molecular dynamics simulation
[21] | Wang H P and Wei B B 2011 Chin. Sci. Bull. 56 3416 | Understanding atomic-scale phase separation of liquid Fe-Cu alloy
[22] | Qi Y, Wang L, Wang S H, Li X L and Cui W C 2014 J. Alloys Compd. 615 962 | Structural and dynamical heterogeneity of undercooled Fe75Cu25 melts with miscibility gap
[23] | Bonny G, Pasianot R C, Castin N and Malerba L 2009 Philos. Mag. 89 3531 | Ternary Fe–Cu–Ni many-body potential to model reactor pressure vessel steels: First validation by simulated thermal annealing