Radiation Damage Analysis of Individual Subcells for GaInP/GaAs/Ge Solar Cells Using Photoluminescence Measurements

Funds: Supported by the National Natural Science Foundation of China under Grant Nos 10675023, 11075018, 11375028 and 11675020, and the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No 20120003110011.
  • Received Date: October 24, 2016
  • Published Date: January 31, 2017
  • The radiation damage of three individual subcells for GaInP/GaAs/Ge triple-junction solar cells irradiated with electrons and protons is investigated using photoluminescence (PL) measurements. The PL spectra of each subcell are obtained using different excitation lasers. The PL intensity has a fast degradation after irradiation, and decreases as the displacement damage dose increases. Furthermore, the normalized PL intensity varying with the displacement damage dose is analyzed in detail, and then the lifetime damage coefficients of the recombination centers for GaInP top-cell, GaAs mid-cell and Ge bottom-cell of the triple-junction solar cells are determined from the PL radiative efficiency.
  • Article Text

  • [1]
    Yamaguchi M 2002 Physica E 14 84 doi: 10.1016/S1386-94770200362-4

    CrossRef Google Scholar

    [2]
    Yamaguchi M 2001 Sol. Energy Mater. Sol. Cells 68 31 doi: 10.1016/S0927-02480000344-5

    CrossRef Google Scholar

    [3]
    Anspaugh B E 1996 Solar Cell Radiation Handbook California: JPL Publication

    Google Scholar

    [4]
    Summers G P, Walters R J, Xapsos M A and Burke E A 1994 IEEE Proc. 1st World Conference on Photovoltaic Energy Conversion Waikoloa, Hawaii 2 2068

    Google Scholar

    [5]
    Messenger S R, Burke E A, Walters R J, Warner J H, Summers G P and Lorentzen J R 2007 19th Space Photovoltaic Research and Technology Conference p 8

    Google Scholar

    [6]
    Makham S, Zazoui M and Bourgoin J C 2004 Moroccan J. Condens. Matter 5 181

    Google Scholar

    [7]
    Wang R, Liu Y H and Sun X F 2008 Nucl. Instrum. Methods Phys. Res. Sect. B 266 745 doi: 10.1016/j.nimb.2007.12.076

    CrossRef Google Scholar

    [8]
    Maximenko S I, Messenger S R, Cress C D and Freitas J A 2010 IEEE Trans. Nucl. Sci. 57 3095 doi: 10.1109/TNS.2010.2083691

    CrossRef Google Scholar

    [9]
    Zazoui M and Bourgoin J C 2002 Appl. Phys. Lett. 80 4455 doi: 10.1063/1.1485134

    CrossRef Google Scholar

    [10]
    Takamoto T, Agui T, Ikeda E and Kurita H 2001 Sol. Energy Mater. Sol. Cells 66 511 doi: 10.1016/S0927-02480000213-0

    CrossRef Google Scholar

    [11]
    Lin S H and Cheng T H 2014 ECS Trans. 64 27 doi: 10.1149/06415.0027ecst

    CrossRef Google Scholar

    [12]
    Zazoui M, Mbarki M, Aldin A Z, Bourgoin J C, Gilard O and Strobl G 2003 J. Appl. Phys. 93 5080 doi: 10.1063/1.1561999

    CrossRef Google Scholar

    [13]
    Lu M, Wang R, Yang K and Yi T C 2013 Nucl. Instrum. Methods Phys. Res. Sect. B 312 137 doi: 10.1016/j.nimb.2013.07.006

    CrossRef Google Scholar

  • Related Articles

    [1]GAO Xiang, SUN Shi-Hai, LIANG Lin-Mei. General Theory of Decoy-State Quantum Cryptography with Dark Count Rate Fluctuation [J]. Chin. Phys. Lett., 2009, 26(10): 100307. doi: 10.1088/0256-307X/26/10/100307
    [2]DENG Hong-Liang, FANG Xi-Ming. Quantum Cryptography in Spin Networks [J]. Chin. Phys. Lett., 2007, 24(11): 3051-3054.
    [3]TAN Yong-Gang, CAI Qing-Yu, SHI Ting-Yun. Quantum Overloading Cryptography Using Single-Photon Nonlocality [J]. Chin. Phys. Lett., 2007, 24(8): 2177-2180.
    [4]LI Chun-Yan, LI Xi-Han, DENG Fu-Guo, ZHOU Ping, LIANG Yu-Jie, ZHOU Hong-Yu. Efficient Quantum Cryptography Network without Entanglement and Quantum Memory [J]. Chin. Phys. Lett., 2006, 23(11): 2897-2899.
    [5]MA Jing, ZHANG Guang-Yu, TAN Li-Ying. Theoretical Study of Quantum Bit Rate in Free-Space Quantum Cryptography [J]. Chin. Phys. Lett., 2006, 23(6): 1379-1382.
    [6]LIU Jin-Ming, GUO Guang-Can. Quantum Teleportation of a Three-Particle Entangled State [J]. Chin. Phys. Lett., 2002, 19(4): 456-459.
    [7]SONG He-Shan, MI Dong, ZHOU Ling, LI Chong. Teleportation of a Quantum State Entangled with Environment [J]. Chin. Phys. Lett., 2002, 19(1): 53-55.
    [8]ZHANG Yong, DENG Le, MAO Min, DING Liang-en. Experimental System for Quantum Cryptography Based on Two Nonorthogonal Photon Polarization States [J]. Chin. Phys. Lett., 1998, 15(4): 238-239.
    [9]SHI Bao-sen, GUO Guang-can. A Quantum Cryptography Key Distribution Way Using Orthogonal States [J]. Chin. Phys. Lett., 1997, 14(7): 521-523.
    [10]ZHANG Xiao-yu, GUO Guang-can. Quantum Cryptography Using Coherent State [J]. Chin. Phys. Lett., 1996, 13(4): 277-280.

Catalog

    Article views (256) PDF downloads (715) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return