Refractive Plasmonic Sensor Based on Fano Resonances in an Optical System

Funds: Supported by the Ministry of Science and Technology of China under Grant No 2016YFA0301300, the National Natural Science Foundation of China under Grant Nos 11374041 and 11574035, and the State Key Laboratory of Information Photonics and Optical Communications.
  • Received Date: September 22, 2016
  • Published Date: January 31, 2017
  • A symmetric plasmonic structure consisting of metal–insulator–metal waveguide, groove and slot cavities is studied, which supports double Fano resonances deriving from two different mechanisms. One of the Fano resonances originates from the interference between the resonances of groove and slot cavities, and the other comes from the interference between slot cavities. The spectral line shapes and the peaks of the double Fano resonances can be modulated by changing the length of the slot cavities and the height of the groove. Furthermore, the wavelength of the resonance peak has a linear relationship with the length of the slot cavities. The proposed plasmonic nanosensor possesses a sensitivity of 800 nm/RIU and a figure of merit of 3150, which may have important applications in switches, sensors, and nonlinear devices.
  • Article Text

  • [1]
    Barnes W L, Dereux A and Tw E 2003 Nature 424 824 doi: 10.1038/nature01937

    CrossRef Google Scholar

    [2]
    Shang C, Chen Z, Wang L L, Zhao Y F, Duan G Y and Yu L 2014 Chin. Phys. Lett. 31 114202 doi: 10.1088/0256-307X/31/11/114202

    CrossRef Google Scholar

    [3]
    Zhang X Y, Wang L L, Chen Z, Cui L N, Shang C, Zhao Y F, Duan G Y, Liu J B and Yu L 2015 Chin. Phys. Lett. 32 054209 doi: 10.1088/0256-307X/32/5/054209

    CrossRef Google Scholar

    [4]
    Yun B, Hu G, Zhang R and Cui Y 2016 J. Opt. 18 055002 doi: 10.1088/2040-8978/18/5/055002

    CrossRef Google Scholar

    [5]
    Chen J, Li Z, Zou Y, Deng Z, Xiao J and Gong Q 2013 Plasmonics 8 1627 doi: 10.1007/s11468-013-9580-4

    CrossRef Google Scholar

    [6]
    Lassiter J B, Sobhani H, Fan J A, Kundu J, Capasso F, Nordlander P and Halas N J 2010 Nano Lett. 10 3184 doi: 10.1021/nl102108u

    CrossRef Google Scholar

    [7]
    Hao F, Sonnefraud Y, Van D P, Maier S A, Halas N J and Nordlander P 2008 Nano Lett. 8 3983 doi: 10.1021/nl802509r

    CrossRef Google Scholar

    [8]
    Qi J, Chen Z, Jing C, Li Y, Qiang W, Xu J and Suan Q 2014 Opt. Express 22 14688 doi: 10.1364/OE.22.014688

    CrossRef Google Scholar

    [9]
    Chen Z Q, Qi J W, Chen J, Li Y D, Hao Z Q, Lu W Q, Xu J J and Sun Q 2013 Chin. Phys. Lett. 30 057301 doi: 10.1088/0256-307X/30/5/057301

    CrossRef Google Scholar

    [10]
    Shegai T, Chen S, Miljkovi V D, Zengin G, Johansson P and Kall M 2011 Nat. Commun. 2 481 doi: 10.1038/ncomms1490

    CrossRef Google Scholar

    [11]
    Wen K, Hu Y, Chen L, Zhou J, Lei L and Guo Z 2015 Plasmonics 10 27 doi: 10.1007/s11468-014-9772-6

    CrossRef Google Scholar

    [12]
    Lu H, Liu X, Mao D, Gong Y and Wang G 2011 Opt. Lett. 36 3233 doi: 10.1364/OL.36.003233

    CrossRef Google Scholar

    [13]
    Lu H, Liu X, Mao D and Wang G 2012 Opt. Lett. 37 3780 doi: 10.1364/OL.37.003780

    CrossRef Google Scholar

    [14]
    Collin S, Vincent G, Haidar R, Bardou N, Rommeluere S and Pelouard J L 2010 Phys. Rev. Lett. 104 027401 doi: 10.1103/PhysRevLett.104.027401

    CrossRef Google Scholar

    [15]
    Zhang C X, Nie Y H and Liang J Q 2008 Chin. Phys. B 17 2670 doi: 10.1088/1674-1056/17/7/052

    CrossRef Google Scholar

    [16]
    Fan J A, Wu C, Bao K, Bao J, Bardhan R, Halas N J, Manoharan V N, Nordlander P, Shvets G and Capasso F 2010 Science 328 1135 doi: 10.1126/science.1187949

    CrossRef Google Scholar

    [17]
    Lassiter J B, Sobhani H, Knight M W, Mielczarek W S, Nordlander P and Halas N J 2012 Nano Lett. 12 1058 doi: 10.1021/nl204303d

    CrossRef Google Scholar

    [18]
    Verellen N, Sonnefraud Y, Sobhani H, Hao F Moshchalkov V V, Dorpe P V, Nordlander P and Maier S A 2009 Nano Lett. 9 1663 doi: 10.1021/nl9001876

    CrossRef Google Scholar

    [19]
    Miroshnichenko A E, Flach S and Kivshar Y S 2010 Rev. Mod. Phys. 82 2257 doi: 10.1103/RevModPhys.82.2257

    CrossRef Google Scholar

    [20]
    Chen J, Li Z, Zhang X, Xiao J and Gong Q 2013 Sci. Rep. 3 1451 doi: 10.1038/srep01451

    CrossRef Google Scholar

    [21]
    Guevara M L L D, Claro F and Orellana P A 2003 Phys. Rev. B 67 195335 doi: 10.1103/PhysRevB.67.195335

    CrossRef Google Scholar

    [22]
    Wu C, Khanikaev A B and Shvets G 2011 Phys. Rev. Lett. 106 107403 doi: 10.1103/PhysRevLett.106.107403

    CrossRef Google Scholar

    [23]
    Eickhoff C, Teichmann M and Weinelt M 2011 Phys. Rev. Lett. 107 176804 doi: 10.1103/PhysRevLett.107.176804

    CrossRef Google Scholar

    [24]
    Shuai Y, Zhao D, Singh Chadha A, Seo J H, Yang H, Fan S, Ma Z and Zhou W 2013 Appl. Phys. Lett. 103 241106 doi: 10.1063/1.4846475

    CrossRef Google Scholar

    [25]
    Han Z and Si B 2011 Opt. Express 19 3251 doi: 10.1364/OE.19.003251

    CrossRef Google Scholar

    [26]
    Becker J, Trügler A, Jakab A, Hohenester U and Sonnnichsen C 2010 Plasmonics 5 161 doi: 10.1007/s11468-010-9130-2

    CrossRef Google Scholar

    [27]
    Liu N, Weiss T and Mesch M 2010 Nano Lett. 10 1103 doi: 10.1021/nl902621d

    CrossRef Google Scholar

    [28]
    Li S, Zhang Y, Song X, Wang Y and Yu L 2016 Opt. Express 24 15351 doi: 10.1364/OE.24.015351

    CrossRef Google Scholar

Catalog

    Article views (190) PDF downloads (940) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return