[1] | Bennett C H, Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing (Bangalore, India) p 175 |
[2] | Shor P and Preskill J 2000 Phys. Rev. Lett. 85 441 | Simple Proof of Security of the BB84 Quantum Key Distribution Protocol
[3] | Kraus B, Gisin N and Renner R 2005 Phys. Rev. Lett. 95 080501 | Lower and Upper Bounds on the Secret-Key Rate for Quantum Key Distribution Protocols Using One-Way Classical Communication
[4] | Renner R 2005 Zürich: ETH |
[5] | Renner R, Gisin N and Kraus B 2005 Phys. Rev. A 72 012332 | Information-theoretic security proof for quantum-key-distribution protocols
[6] | Wang S, Yin Z Q 2015 Nat. Photon. 9 832 | Experimental demonstration of a quantum key distribution without signal disturbance monitoring
[7] | Wang C, Song X T 2015 Phys. Rev. Lett. 115 160502 | Phase-Reference-Free Experiment of Measurement-Device-Independent Quantum Key Distribution
[8] | Wang S, Chen W 2012 Opt. Lett. 37 1008 | 2 GHz clock quantum key distribution over 260 km of standard telecom fiber
[9] | Wang S, Chen W 2014 Opt. Express 22 21739 | Field and long-term demonstration of a wide area quantum key distribution network
[10] | Wang S, Chen W 2010 Opt. Lett. 35 2454 | Field test of wavelength-saving quantum key distribution network
[11] | Su X, Wang Y 2016 Opt. Lett. 41 5596 | Experimental measurement-device-independent quantum key distribution with uncharacterized encoding
[12] | Li F Y, Yin Z Q 2014 Chin. Phys. Lett. 31 070302 | A Security Proof of Measurement Device Independent Quantum Key Distribution: From the View of Information Theory
[13] | Bell J S 1987 Speakable and Unspeakable in Quantum Mechanics (Cambridge: Cambridge University Press) |
[14] | Pearle P M 1970 Phys. Rev. D 2 1418 | Hidden-Variable Example Based upon Data Rejection
[15] | Pironio S, Acín A, Brunner N et al 2009 New J. Phys. 11 045021 | Device-independent quantum key distribution secure against collective attacks
[16] | Gallego R, Brunner N, Hadley C et al 2010 Phys. Rev. Lett. 105 230501 | Device-Independent Tests of Classical and Quantum Dimensions
[17] | Pawłowski M and Brunner N 2011 Phys. Rev. A 84 010302 | Semi-device-independent security of one-way quantum key distribution
[18] | Nayak A 1999 In Proceedings of 40th IEEE FOCS [C] p 369 |
[19] | Li H W, Yin Z Q, Wu Y C et al 2011 Phys. Rev. A 84 034301 | Semi-device-independent random-number expansion without entanglement
[20] | Li H W, Pawłowski M, Yin Z Q et al 2012 Phys. Rev. A 85 052308 | Semi-device-independent randomness certification using quantum random access codes
[21] | Li H W, Mironowicz P, Pawłowski M et al 2013 Phys. Rev. A 87 020302(R) | Relationship between semi- and fully-device-independent protocols
[22] | Wang Y 2014 Chin. Phys. B 23 080303 | Security of a practical semi-device-independent quantum key distribution protocol against collective attacks
[23] | Konig R, Renner R and Schaffner C 2009 IEEE Trans. Inf. Theory 55 4337 | The Operational Meaning of Min- and Max-Entropy
[24] | Devetak I and Winter A 2005 Proc. R. Soc. A: Math. Phys. Eng. Sci. 461 207 | Distillation of secret key and entanglement from quantum states
[25] | Levenberg K 1944 Q. Appl. Math. 2 164 | A method for the solution of certain non-linear problems in least squares
[26] | Li H W, Yin Z Q, Pawłowski M et al 2015 Phys. Rev. A 91 032305 | Detection efficiency and noise in a semi-device-independent randomness-extraction protocol