[1] | You J, Dou L, Yoshimura K et al 2013 Nat. Commun. 4 1446 | A polymer tandem solar cell with 10.6% power conversion efficiency
[2] | Green M A, Emery K, Hishikawa Y et al 2015 Prog. Photovoltaics 23 1 | Solar cell efficiency tables (Version 45)
[3] | Umeyama T, Miyata T, Jakowetz A C et al 2017 Chem. Sci. 8 181 | Regioisomer effects of [70]fullerene mono-adduct acceptors in bulk heterojunction polymer solar cells
[4] | Li M, Gao K, Wan X et al 2016 Nat. Photon. 11 85 | Solution-processed organic tandem solar cells with power conversion efficiencies >12%
[5] | Dimitrov S D, Schroeder B C, Nielsen C B et al 2016 Polymers 8 14 | Singlet Exciton Lifetimes in Conjugated Polymer Films for Organic Solar Cells
[6] | Ball J M, Stranks S D, Hörantner M T et al 2015 Energy Environ. Sci. 8 602 | Optical properties and limiting photocurrent of thin-film perovskite solar cells
[7] | Kang M G, Xu T, Park H J et al 2010 Adv. Mater. 22 4378 | Efficiency Enhancement of Organic Solar Cells Using Transparent Plasmonic Ag Nanowire Electrodes
[8] | Chen C C, Chang W H, Yoshimura K et al 2014 Adv. Mater. 26 5670 | An Efficient Triple-Junction Polymer Solar Cell Having a Power Conversion Efficiency Exceeding 11%
[9] | Gao Y, Le Corre V M, Gaïtis A et al 2016 Adv. Mater. 28 3366 | Homo-Tandem Polymer Solar Cells with V OC >1.8 V for Efficient PV-Driven Water Splitting
[10] | Liu Y, Chen C C, Hong Z et al 2013 Sci. Rep. 3 3356 | Solution-processed small-molecule solar cells: breaking the 10% power conversion efficiency
[11] | L Gomez De Arco, Zhang Y, Schlenker C W K et al 2010 ACS Nano 4 2865 | Continuous, Highly Flexible, and Transparent Graphene Films by Chemical Vapor Deposition for Organic Photovoltaics
[12] | Kang M G, Kim M S, Kim J and Guo L J 2008 Adv. Mater. 20 4408 | Organic Solar Cells Using Nanoimprinted Transparent Metal Electrodes
[13] | Na S I, Kim S S and Kim D Y 2008 Adv. Mater. 20 4061 | Efficient and Flexible ITO-Free Organic Solar Cells Using Highly Conductive Polymer Anodes
[14] | Zou J, Li C Z, Chang C Y et al 2014 Adv. Mater. 26 3618 | Interfacial Engineering of Ultrathin Metal Film Transparent Electrode for Flexible Organic Photovoltaic Cells
[15] | Long Y 2009 Appl. Phys. Lett. 95 193301 | Improving optical performance of inverted organic solar cells by microcavity effect
[16] | Brehier A, Parashkov R, Lauret J S et al 2006 Appl. Phys. Lett. 89 171110 | Strong exciton-photon coupling in a microcavity containing layered perovskite semiconductors
[17] | Gambino S, Genco A, Accorsi G et al 2015 Appl. Mater. Today 1 33 | Ultrastrong light-matter coupling in electroluminescent organic microcavities
[18] | Liao S H, Jhuo H J, Cheng Y S et al 2013 Adv. Mater. 25 4766 | Fullerene Derivative-Doped Zinc Oxide Nanofilm as the Cathode of Inverted Polymer Solar Cells with Low-Bandgap Polymer (PTB7-Th) for High Performance
[19] | Huang W, Gann E, Thomsen L et al 2015 Adv. Energy Mater. 5 1401259 | Unraveling the Morphology of High Efficiency Polymer Solar Cells Based on the Donor Polymer PBDTTT-EFT
[20] | Spano F C 2015 J. Chem. Phys. 142 184707 | Optical microcavities enhance the exciton coherence length and eliminate vibronic coupling in J-aggregates
[21] | Song Y, Clafton S N, Pensack R D, Kee T W and Scholes G D 2014 Nat. Commun. 5 4933 | Vibrational coherence probes the mechanism of ultrafast electron transfer in polymer–fullerene blends
[22] | Bencheikh F, Ducheí D, Ruiz C M et al 2015 J. Phys. Chem. C 119 24643 | Study of Optical Properties and Molecular Aggregation of Conjugated Low Band Gap Copolymers: PTB7 and PTB7-Th
[23] | Min C, Li J, Veronis G et al 2010 Appl. Phys. Lett. 96 133302 | Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings
[24] | Hoppe H, Sariciftci N S and Meissner D 2002 Mol. Cryst. Liq. Cryst. 385 113 | Optical constants of conjugated polymer/fullerene based bulk-heterojunction organic solar cells
[25] | Lidzey D G, Bradley D D C, Skolnick M S et al 1998 Nature 395 53 | Strong exciton|[ndash]|photon coupling in an organic semiconductor microcavity
[26] | Zuo L, Chueh C, Xu Y et al 2014 Adv. Mater. 26 6778 | Microcavity-Enhanced Light-Trapping for Highly Efficient Organic Parallel Tandem Solar Cells
[27] | He Z C, Zhong C M, Su S J et al 2012 Nat. Photon. 6 593 | Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure
[28] | Veldman D, Meskers S C J and Janssen R A J 2009 Adv. Funct. Mater. 19 1939 | The Energy of Charge-Transfer States in Electron Donor-Acceptor Blends: Insight into the Energy Losses in Organic Solar Cells
[29] | Cnops K, Rand B P, Cheyns D et al 2014 Nat. Commun. 5 3406 | 8.4% efficient fullerene-free organic solar cells exploiting long-range exciton energy transfer